

Jewellery School, South Africa

As at 30 June 2010, Harmony reported attributable mineral reserves of 48.1 million ounces and mineral resources of 189.2 million ounces. The measured and indicated mineral resources are inclusive of those resources modified to produce the mineral reserves. Mineral reserves are reported as mill delivered tonnes at the grade delivered to the mill. Of the company's 48.1 million ounces of mineral reserves, 9.9 million ounces are classified as being below infrastructure, i.e. capital expenditure for the development of these reserves into projects and ultimately mines has yet to be approved.

We use certain terms in this report such as 'measured', 'indicated' and 'inferred' resources, which the SEC guidelines strictly prohibit US-registered companies from including in their filings with the SEC. US investors are urged to consider closely the disclosure in our Form 20-F. We also use the term 'mineral reserves' herein which has the same meaning as 'ore reserves' as defined in the SAMREC Code.

Steps to improve the quality of our assets in line with Harmony's strategy have included:

- Closure of the Brand 3, Merriespruit 3, Harmony 2, Evander 2,5 and 7 shafts (a total of six shafts) as a result of the current economic situation making it no longer economically viable to operate;
- Continued investment in the exploration and development at the company's Phakisa, Kusasalethu, Doornkop and Hidden Valley growth projects, reaffirming their robust life-of-mine plans and reserve positions;
- Acquisition of the Free Sate assets of Pamodzi Gold Mining Limited which include President Steyn 1 and 2 shafts, Lorraine 3, Freddies 7 and 9, the President Steyn plant and surface stockpiles;
- The reassessment of the Evander operations and projects. Following a review of the economic viability of the Evander South project under various economic scenarios, it was decided to exclude it from Harmony's reserves, while the Libra project (the retreatment of Evander tailings) has been included in the reserve statement;
- An international exploration programme leading to the discovery of a new zone of mineralisation adjacent to the main Golpu resource in Papua New Guinea; and
- The sale of the Mount Magnet project, in Western Australia, so as to allow Harmony to focus on growing, developing and operating its portfolio of quality assets in Papua New Guinea.

Commodity prices

In converting mineral resources to mineral reserves the following parameters were applied:

- gold price of US\$950/oz
- an exchange rate of US\$/R8.19 for South African operations
- a gold price of R250 000/kg which is a function of the two parameters above
- for the Papua New Guinea operations held within Morobe Mining Joint Ventures, prices of AUD\$1 000/oz (gold), AUD\$15.33/oz (silver), AUD\$5 883/ton (copper) and AUD\$17.33 (molybdenum) were used with an exchange rate of PGK/AUD2.30.

Auditing

Harmony's mineral resources and mineral reserves were comprehensively audited by a team of internal competent persons that functions independently of the operating units. The internal audit team verifies compliance with the Harmony's standards in terms of blocking, valuation, classification, cut-off calculations and development of life-of-mine plans which support Harmony's annual mineral resource and mineral reserve statement. This audit process is specifically designed to ensure that Harmony complies with the requirements for internationally recognised procedures and standards such as:

- South African Code for Reporting Mineral Resources and Mineral Reserves SAMREC Code
- Industry Guide 7 of the United States Securities Exchange Commission
- Sarbanes-Oxley requirements

In addition to the internal audits, Harmony's South African resources and reserves (excluding Rand Uranium (Pty) Ltd) were reviewed and audited by SRK Consulting Engineers and Scientists for compliance with the above. Harmony's Papua New Guinea mineral resources and mineral reserves were independently reviewed by AMC Consultants. for compliance with the standards set out in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Mineral Reserves – The JORC Code.

Competent person's declaration

Harmony employs an ore reserve manager at each of its operations who takes responsibility for the reporting of the mineral resources and mineral reserves of the mines for which they are responsible.

The mineral resources and mineral reserves in this report are based on information compiled by the following competent persons:

Reserves and resources South Africa:

Jaco Boshoff, Pri.Sci.Nat who has 15 years' relevant experience and is registered with the South African Council for Natural Scientific Professions (SACNASP).

Reserves and resources PNG:

Michael Smith for the Wafi Golpu mineral resource, Gregory Job for the Golpu mineral reserve, James Francis for the Hidden Valley mineral resource and Anton Kruger for the Hidden Valley mineral reserve.

Messrs Smith, Job, Francis and Kruger are corporate members of the Australian Institute of Mining and Metallurgy and have relevant experience in the type and style of mineralisation on which they report. They are 'Competent Persons' as defined by the code.

Gregory Job takes ultimate responsibility for the PNG operations.

These competent persons consent to the inclusion in the report of the matters based on the information in the form and context in which it appears. Mr Boshoff, Mr Smith and Mr Job are full-time employees of Harmony Gold Mining Company Limited Ltd. Mr Francis and Mr Kruger are full-time employees of Newcrest Mining Limited.

Jaco Boshoff

Randfontein Office Park Corner Main Reef Road and Ward Avenue Randfontein, 1759 South Africa

Australia

Gregory Job Level 2, 189 Coronation Drive Milton Queensland, 4064

Reconciliation FY09/FY10

Mineral resources

Year-on-year, attributable mineral resources had a negative variance of 26.5 million ounces. This was mainly a result of the restructuring of operations in South Africa. Attributable mineral resources in PNG increased by 3.0 million ounces to 10.8 million ounces while South African mineral resources decreased by 29.5 million ounces to 178.4 million ounces.

Mineral reserves

Mineral reserves were maintained at 48.1 million ounces, as indicated in the table below.

	Gold (tonnes)	Gold (million oz)
Balance at June 2009	1 498	48.2
Reductions		
Mined during FY10	(54)	(1.7)
Mine closures	(13)	(0.4)
Projects (Evander South)	(53)	(1.7)
Geology and scope changes	(14)	(0.5)
Increases		
New acquisitions	36	1.2
Rand Uranium equity (40%)	37	1.1
Projects (Libra)	59	1.9
Balance at June 2010	1 496	48.1

Wafi Golpu, PNG

a New Guinea Australi South Africa . Ok Tedi • Porgera Papua • Mt Hagen New New Wafi-Golpu • Lae Guinea • Hidden Valley Botswana Namibia Limpopo Polokwane Kus lethu Mpumalanga Gauteng Daru Port Moresby Kalgo North West Province ande Free State KwaZulu-Natal South Africa Free State operations Northern Cape Bambanani Durban Joel Eastern Cape Masimong Phakisa Western Cape Target Cape Town Port Elizabeth Tshepong Virginia

Location of Harmony assets in South Africa and Papua New Guinea

Summary tables: Harmony's mineral resources and mineral reserves South Africa underground operations

Mineral reso	ources (tota	I)		Mineral reserves (total)	
Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz)	Tonnes Grade Gold Go (Mt) g/t (000kg) (000	ld)oz)
784.1	5.45	4 275	137 452	127.9 6.16 788 25 3	322
Reported as in	situ mineralis	sation estimate.	S	Reported as mineable production estimates	
Inferred					
Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz)		
452.4	4.53	2 049	65 887		
Indicated				Probable	
Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz)	Tonnes Grade Gold Go (Mt) g/t (000kg) (000	ld)oz)
193.7	6.39	1 238	39 796	→ 76.9 6.24 480 15 4	121
Measured				Proved	
Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz)	Tonnes Grade Gold Go (Mt) g/t (000kg) (000	ld)oz)
 137 9	7.16	988	31 769	➡ 51.0 6.04 308 99	01

South Africa projects (below infrastructure)

	Mineral reso	ources (tota	l)			Mineral res	erves (total)		
ce	Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz)		Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz)
den	115.5	6.73	777	24 985		42.3	7.28	308	9 895
Juli	Reported as in	situ mineralis	sation estimate	S		Reported as n	nineable produ	iction estimates	S
о д	Inferred								
dge ar	Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz)					
owled	45.4	3.36	153	4 908					
fic kn	Indicated					Probablo			
inti	Toppos	Crada	Cold	Cold		Toppos	Crada	Cold	Cold
scie	(Mt)	g/t	(000kg)	(000oz)		(Mt)	g/t	(000kg)	(000oz)
geo	70.1	8.90	624	20 077	~~~>	42.3	7.28	308	9 895
evel of	Measured					Proved			
sing l	Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz)		Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz)
crea		-	-	-	\longleftrightarrow		-	-	-
Ĕ	Consideration of	of mining, meta	allurgical, econor	nic, marketing,	egal, environme	ntal, social and g	governmental fa	ectors (the modif	ying factors)
	1								

Summary tables: Harmony's mineral resources and mineral reserves cont. South Africa surface (including Kalgold)

	Mineral reso	urces (total)		Mineral reserves (total)
ce	Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz)	Tonnes Grade Gold Gold (Mt) g/t (000kg) (000oz)
den	1 638.0	0.30	495	15 928	1 198.2 0.27 322 10 355
onfi	Reported as in	situ mineralis	ation estimates	5	Reported as mineable production estimates
о р	Inferred				
dge ar	Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz)	
vlec	234.1	0.32	74	2 392	
knov					
tific	Indicated				Probable
scien	Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz)	Tonnes Grade Gold Gold (Mt) g/t (000kg) (000oz)
gec	1 248.0	0.29	357	11 471	1 145.7 0.26 295 9 494
evel of	Measured				Proved
sing le	Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz)	Tonnes Grade Gold Gold (Mt) g/t (000kg) (000oz)
rea	155.9	0.41	64	2 065	52.5 0.51 27 861
Inc	Consideration c	of mining, meta	Illurgical, econor	nic, marketing, l	gal, environmental, social and governmental factors (the modifying factors)
V					

Papua New Guinea*

Tonnes	Grade	Gold	Gold	Tonnes	Grade	Gold	Gold
(Mt)	g/t	(000kg)	(000oz)	(Mt)	g/t	(000kg)	(00002
373.4	0.90	336	10 809	66.4	1.19	79	2 532
Reported as i	า situ mineralis	sation estimate	S	Reported as I	nineable prodi	uction estimates	S
Inferred							
Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz)				
256.4	0.67	172	5 530				
Indicated				Probable			
Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz)	Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (0000
112.8	1.38	155	4 992	62.6	1.13	71	2 272
Measured				Proved			
Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz)	Tonnes (Mt)	Grade g/t	Gold (000kg)	Gold (000oz
	2 07	9	287	3.8	2.14	8	260

* Represents Harmony's equity portion of 50%

Harmony – total underground and surface (including below infrastructure)

Hidden Valley, PNG

Mineral resources statement (Metric)

Gold

	Measured			Indicated			Inferred			Total		
			Gold			Gold			Gold			Gold
	Tonnes	Grade	kg	Tonnes	Grade	kg	Tonnes	Grade	kg	Tonnes	Grade	kg
Operations	(Mt)	(g/t)	(000)	(Mt)	(g/t)	(000)	(Mt)	(g/t)	(000)	(Mt)	(g/t)	(000)
Free State												
Underground	78.8	8.75	690	90.8	8.76	795	229.5	6.01	1 380	399.1	7.18	2 865
Surface	_	-	-	971.9	0.24	234	206.9	0.24	49	1 178.8	0.24	283
Total	78.8	8.75	690	1 062.7	0.97	1 029	436.4	3.27	1 429	1 577.8	1.99	3 148
West Rand												
Underground	45.8	4.38	201	77.2	4.26	329	199.3	2.52	502	322.3	3.20	1 032
Evander												
Underground	3.8	14.01	53	3.7	15.48	57	13.1	11.15	146	20.6	12.46	256
Evander												
(below infrastrue	cture) –	-	-	70.1	8.90	624	45.4	3.36	153	115.5	6.73	777
Surface	-	-	-	202.9	0.29	59	_	-	-	202.9	0.29	59
Total	3.8	14.01	53	276.7	2.68	740	58.5	5.11	299	339.0	3.22	1 092
Rand Uranium	1											
Underground	9.5	4.68	45	22.1	2.56	56	10.6	2.07	22	42.2	2.92	123
Surface	121.9	0.29	35	9.4	0.45	4	_	_	-	131.3	0.30	39
Total	131.4	0.60	80	31.5	1.93	60	10.6	2.07	22	173.5	0.93	162
Kalgold	34.0	0.86	29	63.8	0.94	60	27.2	0.93	25	125.0	0.92	114
٥٨												
Underground	137 9	7 16	989	263.9	7.06	1 861	497.9	1 12	2 203	899 7	5 62	5 053
Surface	155.9	0.41	64	1 248.0	0.29	357	234.1	0.32	74	1 638.0	0.30	495
Total	293.8	_	1 053	1 511 9	_	2 218	732	_	2 277	2 537 7	_	5 548
	270.0		1 000	1011.7		2 210	, 02		2 277	2 007.17		0 0 10
Papua												
New Guinea ²	4.3	2.07	9	112.8	1.38	155	256.4	0.67	172	373.4	0.90	336
Grand total	298.1	_	1 062	1 624.7	_	2 373	988.4	_	2 449	2 911.1	_	5 884

Silver

	IV	leasure	t	l.	ndicated	ł	I	nferred			Total	
			Silver			Silver			Silver			Silver
	Tonnes	Grade	kg	Tonnes	Grade	kg	Tonnes	Grade	kg	Tonnes	Grade	kg
Operations	(Mt)	(g/t)	(000)	(Mt)	(g/t)	(000)	(Mt)	(g/t)	(000)	(Mt)	(g/t)	(000)
Papua New Gu	uinea ²											
Hidden Valley	4.2	35.00	147	33.1	33.40	1 105	10.9	31.10	340	48.2	33.02	1 592

Copper

	Measured			Indicated				Inferred	I	Total		
Operations	Tonnes (Mt)	Grade (%)	Cu (Mkg)									
Papua New G	uinea²											
Golpu	-	_	-	44.9	1.38	621	205.4	0.86	1 763	250.3	0.95	2 384
Nambonga	_	-	-	_	_	-	19.9	0.22	44	19.9	0.22	44
Total	-	-	-	44.9	1.38	621	225.3	0.80	1 807	270.2	0.90	2 428

Molybdenum

	Measured			Indicated				Inferred	I	Total		
	Tonnes	Grade	Мо	Tonnes	Grade	Мо	Tonnes	Grade	Мо	Tonnes	Grade	Мо
Operations	(Mt)	(ppm)	(Mkg)	(Mt)	(ppm)	(Mkg)	(Mt)	(ppm)	(Mkg)	(Mt)	(ppm)	(Mkg)
Papua New Gu	uinea²											
Golpu	_	-	-	44.9	107.72	5	205.4	111.33	23	250.3	110.68	28

Uranium

	Measured		I	Indicated				Inferred		Total		
	Tonnes (Mt)	Grade (kg/t)	U ₃ O ₈ (Mkg)	Tonnes (Mt)	Grade (kg/t)	U ₃ O ₈ (Mkg)	Tonnes (Mt)	Grade (kg/t)	U ₃ O ₈ (Mkg)	Tonnes (Mt)	Grade (kg/t)	U ₃ O ₈ (Mkg)
South Africa	Undergro	ound										
Free State												
Masimong	9.7	0.284	3	10.7	0.278	3	76.7	0.238	18	97.1	0.247	24
Phakisa	0.5	0.160	0	22.2	0.196	4	12.7	0.196	2	35.4	0.196	6
Tshepong	0.3	0.209	0	3.5	0.198	1	33.3	0.160	5	37.1	0.164	6
Total	10.5	0.276	3	36.4	0.220	8	122.7	0.212	25	169.6	0.218	36
Rand Uranium	1											
Cooke 2	3.5	0.243	1	6.8	0.228	2	1.1	0.224	0	11.4	0.232	3
Cooke 3	4.0	0.389	2	11.7	0.286	3	6.9	0.280	2	22.6	0.303	7
Total	7.5	0.321	3	18.5	0.265	5	8.0	0.273	2	34.0	0.279	10
Total SA												
Underground	18.0	0.295	6	54.9	0.235	13	130.7	0.216	27	203.6	0.228	46
South Africa	Surface											
Free State Regi	on –	_	_	159.9	0.107	17	13.5	0.336	5	173.4	0.125	22
Rand Uranium ¹	24.5	0.206	5	31.2	0.097	3	-	-	-	55.7	0.145	8
Total SA												
Surface	24.5	0.206	5	191.1	0.105	20	13.5	0.336	5	229.1	0.130	30
Grand total	42.5	-	11	246	-	33	144.2	-	32	432.7	-	76

1 Represents Harmony's equity portion of 40%

2 Represents Harmony's equity portion of 50%

NB Rounding of numbers may result in slight computational discrepancies Note: 1 tonne = 1 000 kg = 2 204 lbs

Mineral resources statement (Imperial)

Gold

	I	Measure	ed	I	ndicated	1	I	Inferred			Total		
		Grade	Gold		Grade	Gold		Grade	Gold		Grade	Gold	
	Tons	(oz/	oz	Tons	(oz/	oz	Tons	(oz/	oz	Tons	(oz/	ΟZ	
Operations	(Mt)	ton)	(000)	(Mt)	ton)	(000)	(Mt)	ton)	(000)	(Mt)	ton)	(000)	
Free State													
Underground	86.8	0.255	22 170	100.1	0.256	25 571	253.0	0.175	44 358	439.9	0.209	92 099	
Surface	-	-	-	1 071.3	0.007	7 515	228.0	0.007	1 574	1 299.3	0.007	9 089	
Total	86.8	0.255	22 170	1 171.4	0.028	33 086	481.0	0.095	45 932	1 739.2	0.058	101 188	
West Rand													
Underground	50.5	0.128	6 455	85.0	0.124	10 573	219.7	0.073	16 141	355.2	0.093	33 169	
Evander													
Underground	4.2	0.409	1 709	4.1	0.451	1 836	14.4	0.325	4 686	22.7	0.363	8 231	
Evander													
(below infrastrue	cture) –	-	-	77.3	0.260	20 077	50.0	0.098	4 908	127.3	0.196	24 985	
Surface	-	-	-	223.7	0.008	1 897	-	-	-	223.7	0.008	1 897	
Total	4.2	0.409	1 709	305.1	0.078	23 810	64.4	0.149	9 594	373.7	0.094	35 113	
Rand Uranium) ¹												
Underground	10.5	0.137	1435	24.3	0.075	1816	11.6	0.060	702	46.4	0.085	3 953	
Surface	134.4	0.008	1121	10.4	0.013	137	-	-	-	144.8	0.009	1 258	
Total	144.9	0.018	2556	34.7	0.056	1953	11.6	0.060	702	191.2	0.027	5211	
Kalgold	37.5	0.025	944	70.3	0.027	1922	30.0	0.027	818	137.8	0.027	3 684	
SA													
Underground	152	0.209	31 769	290.8	0.206	59 873	548.7	0.129	70 795	991.5	0.164	162 437	
Surface	171.9	0.012	2 065	1 375.7	0.008	11 471	258.0	0.009	2 392	1 805.6	0.009	15 928	
Total	323.9	_	33 834	1 666.5	_	71 344	806.7	_	73 187	2 797.1	_	178 365	
Papua													
New Guinea ²	4.8	0.060	287	124.3	0.040	4 992	282.6	0.020	5 530	411.7	0.026	10 809	
Grand total	328.7	_	34 121	1 790.8	_	76 336	1 089.3	_	78 717	3 208.8	_	189 174	

Silver

	Measured			I	Indicated			nferred		Total		
		Grade	Silver	Grade Silver			Grade Silver			Grade Silv		
	Tons	(oz/	ΟZ	Tons	(oz/	ΟZ	Tons	(oz/	ΟZ	Tons	(oz/	οz
Operations	(Mt)	ton)	(000)	(Mt)	ton)	(000)	(Mt)	ton)	(000)	(Mt)	ton)	(000)
Papua New Gui	nea ²											
Hidden Valley	4.6	1.021	4 739	36.5	0.974	35 537	12.0	0.907	10 920	53.1	0.963	51 196

Copper

	Measured Tons Grade Cu (Mt) (%) (Mlb) inea ²		ł		Indicated	1		Inferred	I	Total			
Operations	Tons (Mt)	Grade (%)	Cu (Mlb)	Tons (Mt)	Grade (%)	Cu (Mlb)	Tons (Mt)	Grade (%)	Cu (Mlb)	Tons (Mt)	Grade (%)	Cu (Mlb)	
Papua New Gu	linea²			40 F	1.05/	1.2/0	224 4	0 779	2.007	07E 0	0.974		
Nambonga	_	_	_	49.5	1.200	- 1 309	220.4 21.9	0.200	3 880 97	275.9	0.864	5 255 97	
Total	_	-	-	49.5	1.256	1 369	248.3	0.727	3 983	297.8	0.815	5 352	

Molybdenum

	Measured Tons Grade Mo (Mt) (lb/ton) (Mlb uinea ²				Indicated			Inferred		Total			
	Tons	Grade	Мо	Tons	Grade	Мо	Tons	Grade	Мо	Tons	Grade	Мо	
Operations	(Mt)	(lb/ton)	(Mlb)	(Mt)	(lb/ton)	(Mlb)	(Mt)	(lb/ton)	(Mlb)	(Mt)	(lb/ton)	(Mlb)	
Papua New Gui	nea ²												
Golpu	-	_	-	49.5	0.215	11	226.4	0.223	50	275.9	0.221	61	

Uranium

	I	Measured	l		Indicated			Inferred			Total	
	Tons (Mt)	Grade (lb/ton)	U ₃ O ₈ (MIb)	Tons (Mt)	Grade (lb/ton)	U ₃ O ₈ (Mlb)	Tons (Mt)	Grade (lb/ton)	U ₃ O ₈ (Mlb)	Tons (Mt)	Grade (lb/ton)	U ₃ O ₈ (Mlb)
South Africa U	Indergi	round										
Free State												
Masimong	10.7	0.567	6	11.8	0.556	7	84.6	0.475	40	107.1	0.493	53
Phakisa	0.5	0.320	0	24.4	0.393	10	14.0	0.393	5	38.9	0.392	15
Tshepong	0.3	0.417	0	3.8	0.396	2	36.7	0.320	12	40.8	0.328	14
Total	11.5	0.551	6	40.0	0.441	19	135.3	0.425	57	186.8	0.436	82
Rand Uranium ¹												
Cooke 2	3.9	0.486	2	7.5	0.455	3	1.2	0.447	1	12.6	0.464	6
Cooke 3	4.4	0.778	3	12.9	0.572	7	7.6	0.561	4	24.9	0.605	14
Total	8.3	0.642	5	20.4	0.529	11	8.8	0.546	5	37.5	0.558	20
Total SA												
Underground	19.8	0.589	11	60.4	0.471	30	144.1	0.432	62	224.3	0.456	102
South Africa S	urface											
Free State Region	n 0.0	0.000	0	176.2	0.214	38	14.9	0.672	10	191.1	0.250	48
Rand Uranium ¹	27.0	0.412	11	34.4	0.194	7	0.0	0.000	0	61.4	0.290	18
Total SA												
Surface	27.0	0.412	11	210.6	0.211	45	14.9	0.672	10	252.5	0.259	66
Grand total	46.8	-	22	271	-	75	159.0	-	72	476.8	-	168

1 Represents Harmony's equity portion of 40%

2 Represents Harmony's equity portion of 50%

NB Rounding of numbers may result in slight computational discrepancies Note: 1 ton = 907 kg = 2 000 lbs

Mineral reserve statement (Metric)

Gold

		Proved		I	Probable	е		Total	
		Gold			Gold			Gold	
	Tonnes	Grade	kg ¹	Tonnes	Grade	kg ¹	Tonnes	Grade	kg1
Operations	(Mt)	(g/t)	(000)	(Mt)	(g/t)	(000)	(Mt)	(g/t)	(000)
Free State									
Underground	32.5	5.98	194	45.1	6.46	291	77.6	6.26	485
Surface	_	_	-	926.5	0.24	224	926.5	0.24	224
Total	32.5	5.98	194	971.6	0.53	515	1 004.1	0.71	709
West Rand									
Underground	14.0	6.30	88	25.9	6.14	159	39.9	6.20	247
Evander									
Underground	2.2	7.20	16	1.6	9.12	15	3.8	8.00	31
Evander (below infrastructure)	-	_	-	42.3	7.28	308	42.3	7.28	308
Surface	-	_	-	202.9	0.29	59	202.9	0.29	59
Total	2.2	7.20	16	246.8	1.55	382	249.0	1.60	398
Rand Uranium ²									
Underground	2.2	4.20	9	4.4	3.45	15	6.6	3.70	24
Surface	30.6	0.29	9	8.8	0.45	4	39.4	0.33	13
Total	32.8	0.55	18	13.2	1.45	19	46.0	0.81	37
Kalgold	21.9	0.82	18	7.5	1.07	8	29.4	0.88	26
SA									
Underground	50.9	6.04	307	119.3	6.61	788	170.2	6.44	1 095
Surface	52.5	0.51	27	1 145.7	0.26	295	1 198.2	0.27	322
Total	103.4	_	334	1 265	_	1 083	1 368.4	-	1 417
Papua New Guinea ³	3.8	2.14	8	62.6	1.13	71	66.4	1.19	79
Grand total	107.2	_	342	1 327.5	-	1 154	1 434.8	-	1 496

Silver

		Proved		F	Probable	9		Total	
			Silver			Silver			Silver
Operations	Tonnes	Grade	kg ¹	Tonnes	Grade	kg ¹	Tonnes	Grade	kg ¹
	(1910)	(g/t)	(000)	(1910)	(8/1)	(000)	(IVIL)	(g/t)	(000)
Papua New Guinea ³		05 50			05 50	0.40		05 50	
Hidden Valley	3.8	35.58	134	24.3	35.52	862	28.1	35.53	996

Copper

		Proved		F	Probable	е		Total	
Operations	Tonnes (Mt)	Grade (%)	Cu (Mkg ¹)	Tonnes (Mt)	Grade (%)	Cu (Mkg ¹)	Tonnes (Mt)	Grade (%)	Cu (Mkg¹)
Papua New Guinea ³									
Golpu	-	-	-	35.4	1.13	400	35.4	1.13	400

Molybdenum

		Proved		F	Probable	•		Total	
Operations	Tonnes (Mt)	Grade (ppm)	Mo (Mkg¹)	Tonnes (Mt)	Grade (ppm)	Mo (Mkg ¹)	Tonnes (Mt)	Grade (ppm)	Mo (Mkg¹)
Papua New Guinea ³									
Golpu	-	_	-	35.4	121.00	4	35.4	121.00	4

1 Metal figures are fully inclusive of all mining dilutions and gold losses, and are reported as mill delivered tonnes and head grades. Metallurgical recovery factors have not been applied to the reserve figures.

2 Represents Harmony's equity portion of 40%

 Represents Harmony's equity portion of 50%
 NB Rounding of numbers may result in slight computational discrepancies Note: 1 tonne = 1 000 kg = 2 204 lbs

Tshepong, South Africa

Mineral reserve statement (Imperial)

Gold

		Provec	1		Probab	le		Total	
		Grade	Gold		Grade	Gold		Grade	Gold
	Tons	(oz/	0Z ¹	Tons	(oz/	OZ ¹	Tons	(oz/	OZ ¹
Operations	(Mt)	ton)	(000)	(Mt)	ton)	(000)	(Mt)	ton)	(000)
Free State									
Underground	35.8	0.174	6 242	49.7	0.188	9 356	85.5	0.182	15 598
Surface	_	_	-	1 021.3	0.007	7 212	1 021.3	0.007	7 212
Total	35.8	0.174	6 242	1 071.0	0.015	16 568	1 106.8	0.021	22 810
West Rand									
Underground	15.5	0.184	2 840	28.5	0.179	5 111	44.0	0.181	7 951
Evander									
Underground	2.5	0.210	520	1.8	0.266	470	4.3	0.234	990
Evander (below infrastructure)	_	-	-	46.6	0.212	9895	46.6	0.212	9 895
Surface	_	-	-	223.7	0.008	1 897	223.7	0.008	1 897
Total	2.5	0.210	520	272.1	0.045	12 262	274.6	0.047	12 782
Rand Uranium ²									
Underground	2.4	0.122	299	4.8	0.100	484	7.2	0.108	783
Surface	33.8	0.008	286	9.7	0.013	127	43.5	0.010	413
Total	36.2	0.016	585	14.5	0.042	611	50.7	0.024	1 196
Kalgold	24.1	0.024	575	8.3	0.031	258	32.4	0.026	833
SA									
Underground	56.2	0.176	9 901	131.4	0.193	25 316	187.6	0.188	35 217
Surface	57.9	0.015	861	1 263	0.008	9 494	1 320.9	0.008	10 355
Total	114.1	_	10 762	1 394.4	_	34 810	1 508.5	_	45 572
Papua New Guinea ³	4.2	0.062	260	69.0	0.033	2 272	73.1	0.035	2 532
Grand total	118.3	_	11 022	1 463.4	-	37 082	1 581.6	-	48 104

Silver

		Provec	1		Probabl	е		Total	
		Grade	Silver		Grade	Silver		Grade	Silver
	Tons	(oz/	oz	Tons	(oz/	oz	Tons	(oz/	oz
Operations	(Mt)	ton)	(000)	(Mt)	ton)	(000)	(Mt)	ton)	(000)
Papua New Guinea ³									
Hidden Valley	4.2	1.038	4 320	26.8	1.036	27 726	31	1.036	32 046

Copper

		Proved			Probab	le		Total	
Operations	Tons (Mt)	Grade (%)	Cu (Mlb)	Tons (Mt)	Grade	Cu (Mlb)	Tons (Mt)	Grade	Cu (Mlb)
Papua New Guinea ³	((10)		((10)		((10)	
Golpu	-	-	-	39.0	1.025	882	39.0	1.025	882

Molybdenum

		Proved			Probabl	е		Total	
	Tons	Grade	Мо	Tons	Grade	Мо	Tons	Grade	Мо
Operations	(Mt)	(lb/ton)	(Mlb)	(Mt)	(lb/ton)	(Mlb)	(Mt)	(lb/ton)	(Mlb)
Papua New Guinea ³									
Golpu	-	_	-	39.0	0.231	9	39.0	0.231	9

1 Metal figures are fully inclusive of all mining dilutions and gold losses, and are reported as mill delivered tonnes and head grades. Metallurgical recovery factors have not been applied to the reserve figures.

2 Represents Harmony's equity portion of 40%

NB Rounding of numbers may result in slight computational discrepancies Note: 1 ton = 907 kg = 2 000 lbs

Wafi Golpu, PNG

³ Represents Harmony's equity portion of 50%

Free State operations

Geology

Harmony's Free State operations are located on the south-western corner of the Witwatersrand Basin, between the towns of Allanridge, Welkom, Theunissen and Virginia. The basin, situated on the Kaapvaal Craton, has been filled by a 6-kilometre thick succession of sedimentary rocks, which extends laterally for hundreds of kilometres.

The Free State goldfield is divided into two sections, cut by the north-south striking De Bron Fault. This major structure has a vertical displacement of about 1 500 metres in the region of Bambanani, as well as a lateral shift of 4 kilometres. This lateral shift can allow a reconstruction of the orebodies of Unisel to the west of the De Bron Fault and Merriespruit to the east. A number of other major faults (Stuirmanspan, Dagbreek, Arrarat and Eureka) lie parallel to the De Bron Fault.

To the west of the De Bron, the mines and shafts currently in operation are Target, Tshepong, Phakisa, Nyala, Unisel, Bambanani and Joel. Dips are mostly towards the east, averaging 30 degrees but become steeper as they approach the De Bron Fault. To the east of the fault lie Merriespruit 1 and Masimong. These mostly dip towards the west at 20 degrees, although Masimong is structurally complex and dips of up to 40 degrees have been measured. Between these two blocks lies the uplifted horst block of West Rand Group sediments with no reef preserved.

The western margin area is bound by synclines and reverse thrust faults and is structurally complex. Towards the south and east, reefs sub-crop against overlying strata, eventually cutting out against the Karoo to the east of the lease area.

Most of the mineral resource tends to be concentrated in reef bands located on one or two distinct unconformities. A smaller portion of the mineral resource is located on other unconformities. Mining that has taken place is mostly deep-level underground mining, exploiting the narrow, generally shallow dipping tabular reefs.

The Basal Reef is the most common reef horizon and is mined at all shafts except Target and Joel. It varies from a single pebble lag to channels of more than 2 metres thick. It is commonly overlain by shale, which thickens northwards. Tshepong has resorted to undercutting of its mining panels to reduce the effect of shale dilution.

The second major reef is the Leader Reef, located 15-20 metres above the Basal Reef. This is mined mostly at shafts to the south – Unisel and Merriespruit 1. Further north, it becomes poorly developed with erratic grades. The reef consists of multiple conglomerate units, separated by thin quartzitic zones, often up to 4 metres thick. A selected mining cut on the most economic horizon is often undertaken.

The B Reef is a highly channelised orebody located 140 metres stratigraphically above the Basal Reef. Because of its erratic nature, it is only mined at Masimong and Tshepong. Within the channels, grades are excellent, but this reduces to nothing outside of the channels. Consequently, both shafts have undertaken extensive exploration to locate these pay channels.

The A Reef is also a highly channelised reef, located some 40 metres above the B Reef. This is currently only mined at Harmony 2 and Brand, although an extensive channel lies along the western margin from Nyala to Lorraine. It consists of multiple conglomerate bands of up to 4 metres thick and a selected mining cut is usually required to optimise the orebody.

Joel Mine, located 30 kilometres south of Welkom, is the only Harmony Free State operation to mine the Beatrix Reef. This varies from a single-pebble lag to a multiple conglomerate, often showing mixing of the reef with some of the overlying lower grade VS5 (mixed pebble conglomerate) material. None of the other reefs are present this far south, having sub-cropped against the Beatrix Reef.

The Target operations are located at the northern extent of the Free State goldfields, some 20 kilometres north of Welkom. The reefs currently exploited are the Elsburg-Dreyerskuil conglomerates, which form a wedge-shaped stacked package, comprising 35 separate reef horizons, often separated by quartzite beds. The Elsburg Reefs are truncated by an unconformity surface at the base of the overlying Dreyerskuil Member. Below the sub-crop, the Elsburg dips steeply to the east, with dips becoming progressively shallower down dip. Close to the sub-outcrop,

the thickness of the intervening quartzites reduces, resulting in the Elsburg Reefs coalescing to form composite reef packages that are exploited by massive mining techniques at the Target mine. The Dreyerskuil also consists of stacked reefs dipping shallowly to the east. These reefs tend to be less numerous, but more laterally extensive than the underlying Elsburg Reefs.

		Me	easure	d		Indic	ated			Infe	erred			То	tal	
			Gold	Gold			Gold	Gold			Gold	Gold			Gold	Gold
	Tonn	es	(000	(000)	Tonne	es	(000	(000)	Tonne	es	(000	(000	Tonne	s	(000	(000
Operations	(Mt	:) g/t	kg)	oz)	(Mt)	g/t	kg)	oz)	Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	oz)
Underground																
Bambanani																
Bambanani	117	11 47	134	4.318	32	9 75	31	1 009	10	10.67	11	356	15 9	11 07	176	5 683
Stevn 2	32	11 49	.37	1 190	0.2	12 04	8	272	0.9	10.01	9	284	4.8	11.30	.70	1 746
	0.2					.2.0		272	017			201				
Total	14.9	11.47	171	5 508	3.9	10.16	39	1 281	1.9	10.37	20	640	20.7	11.12	230	7 429
Joel	5.0	6.85	34	1 096	5.5	7.27	40	1 276	12.5	6.06	76	2 439	23.0	6.52	149	4 811
Masimong 5	11.1	7.68	85	2 732	6.0	7.09	43	1 371	79.7	5.89	469	15 073	96.8	6.17	597	19 176
				4.050	05.7		070		<i>(</i> 0 -						- 40	
Phakisa	4.6	7.06	33	1 052	25.7	10.90	279	8 986	60.7	6.69	407	13 074	91.0	7.90	/19	23 112
Target																
Target 1	54	10 11	55	1 770	14 4	7 37	106	3 411	51	6 32	32	1 038	24 9	7 75	193	6 2 1 9
Target 3	7.1	9.83	70	2 240	10.1	8.67	88	2 827	5.5	6.85	38	1 210	22.7	8.59	196	6 277
Total	12 5	0 05	125	1 010	24.5	7 01	10/	6 238	10.6	6 50	70	2 2/18	17.6	8 15	380	12 /06
lotal	12.5	7.75	125	4 0 10	24.5	7.71	174	0 200	10.0	0.57	70	2 240	47.0	0.15	507	12 470
Tshepong	12.8	11.00	141	4 527	12.5	10.90	136	4 371	11.3	9.55	108	3 473	36.6	10.52	385	12 371
Virginia																
Merriespruit 1	8.1	5.47	44	1 417	3.3	4.21	14	444	35.4	3.88	137	4 410	46.8	4.18	195	6 271
Unisel	9.8	5.82	57	1 828	9.4	5.29	50	1 604	17.3	5.39	93	3 001	36.5	5.48	200	6 433
Total	17.9	5.66	101	3 245	12.7	5.01	64	2 048	52.7	4.37	230	7 411	83.3	4.75	395	12 704
Tatal Free Ctat	_															
Underground	e 78.8	8 75	690	22 170	90.8	8 76	795	25 571	229 4	6 01	1 380	44 358	399.0	7 18	2 864	92 099
Curfage	70.0	0.70	070	22 170	70.0	0.70	770	20 07 1	227.4	0.01	1 000		077.0	7.10	2 004	, 2 0, ,
Surface	<i>.</i>															
Free State Sur	tace				<u> </u>											
Phoenix	-		-	-	92.4	0.30	28	899	1.2	0.22	0	9	93.6	0.30	28	908
St Helena	-		-	-	288.5	0.25	/2	2 319	-	-	-	-	288.5	0.25	/2	2 319
Waste rock dur	nps –		-	-	9.0	0.56	5	162	22.0	0.49	11	345	31.0	0.51	16	507
Slimes dams	-	-	-	-	582.0	0.22	129	4 135	183.6	0.21	38	1,220	765.6	0.22	167	5 355
Total Free Stat	Δ															
Surface	- -	_	_		971 0	0.24	221	7 515	204.8	0.24	10	1 57/	1 179 7	0.24	283	0 0 20
JUIIUUU					77 1.7	0.24	204	7 515	200.0	0.24	47	1 374	1 170.7	0.24	203	7 007
Grand total	78.8	- 3	690	22 170	1 062.7	- 1	1 029	33 086	436.2	-	1 429	45 932	1 577.7	-	3 147	101 188

Gold – Mineral resources

Free State operations cont.

Uranium – Mineral resources

	Measured			Indicated				Inferred				Total				
Operations	Tonne: (Mt)	s kg/t	U ₃ O ₈ (Mkg)	U ₃ O ₈ (Mlb)	Tonnes (Mt)	s kg/t	U ₃ O ₈ (Mkg)	U ₃ O ₈ (Mlb)	Tonne Mt)	s kg/t	U ₃ O ₈ (Mkg)	U ₃ O ₈ (Mlb)	Tonnes (Mt)	s kg/t	U ₃ O ₈ (Mkg)	U ₃ O ₈ (Mlb)
Underground														Ŭ		
Masimong 5 Phakisa	9.7 0.5	0.28 0.16	3 0	6 0	10.7 22.2	0.28 0.20	3 4	7 10	76.7 12.7	0.24 0.20	18 2	40 5	97.1 35.4	0.25 0.20	24 6	53 15
Tshepong	0.3	0.21	0	0	3.5	0.20	1	2	33.3	0.16	5	12	37.1	0.16	6	14
Total Free State Underground	10.5	0.28	3	6	36.4	0.22	8	19	122.7	0.21	25	57	169.6	0.22	36	82
Surface	0.0	0.00	_	0	159.9	0.11	17	38	13.5	0.34	5	10	173.4	0.12	22	48
Total Free State Surface	0.0	0.00	_	0	159.9	0.11	17	38	13.5	0.34	5	10	173.4	0.12	22	48
Grand total	10.5	0.28	3	6	196.3	0.13	25	56	136.2	0.22	30	67	343	0.17	58	130

Modifying factors

Operations	MCF	SW	MW	PRF
	(%)	(cm)	(cm)	(%)
Bambanani	82	187	206	96
Steyn 2	81	142	173	96
Joel	88	150	176	95
Masimong 5	68	135	156	96
Phakisa	82	106	127	96
Target 3	76	100	119	96
Tshepong	66	105	130	96
Merriespruit 1	68	173	214	94
Unisel	76	186	203	95

MW = Milling width PRF = Plant recovery factor

Operations	MCF	PRF
	(%)	(%)
Target 1	100	96
Free State (Phoenix)	100	55
Free State (St Helena)	100	55
Free State (Other)	100	55

MCF = Mine call factor

PRF = Plant recovery factor

Gold – Mineral reserves

		Pro	ved			Pro	bable					
			Gold	Gold			Gold	Gold			Gold	Gold
	Tonnes		(000	(000)	Tonnes		(000)	(000	Tonnes		(000	(000
Operations	(Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	oz)
Underground												
Bambanani												
Bambanani	3.9	10.41	40	1 301	_	_	_	-	3.9	10.41	40	1 301
Steyn 2	0.5	7.26	3	105	0.1	6.95	1	25	0.6	7.20	4	130
Total	4.4	10.08	43	1 406	0.1	6.95	1	25	4.5	10.00	44	1 431
Joel	1.2	6.25	7	240	1.5	5.61	8	264	2.7	5.90	15	504
Masimong 5	5.4	5.11	28	894	1.9	5.09	10	306	7.3	5.10	38	1 200
Phakisa	0.6	4.65	3	94	19.4	8.13	158	5 065	20.0	8.02	161	5 159
Target												
Target 1	4.0	5.50	22	702	7.6	4.49	34	1 104	11.6	4.84	56	1 806
Target 3	1.0	7.59	8	252	3.6	6.33	23	743	4.6	6.61	31	995
Total	5.0	5.93	30	954	11.2	5.08	57	1 847	16.2	5.34	87	2 801
Tshepong	13.1	5.33	70	2 247	9.4	5.36	51	1 626	22.5	5.34	121	3 873
Virginia												
Merriespruit 1	0.4	4.01	2	58	0.1	3.55	0	9	0.5	3.94	2	67
Unisel	2.3	4.71	11	349	1.4	4.67	7	214	3.7	4.70	18	563
Total	2.7	4.60	13	407	1.5	4.62	7	223	4.2	4.60	20	630
Total Free State												
Underground	32.4	5.98	194	6 242	45	6.46	292	9 356	77.4	6.26	486	15 598
Surface												
Free State Surface												
Phoenix	_	_	_	-	92.4	0.30	28	899	92.4	0.30	28	899
St Helena	-	-	_	-	288.5	0.25	72	2 319	288.5	0.25	72	2 319
Waste rock dumps	_	_	_	_	5.1	0.61	3	99	5.1	0.61	3	99
Slimes dams	_		-	-	540.5	0.22	121	3 895	540.5	0.22	121	3 895
Total Free State												
Surface	_	_	_	_	926.5	0.24	224	7 212	926.5	0.24	224	7 212
Grand total	32.4	-	194	6 242	971.5	_	516	16 568	1 003.90	-	710	22 810

Free State operations cont.

Masimong: Grade tonnage curve (measured and indicated resources)

Phakisa: Grade tonnage curve

(measured and indicated resources)

Tshepong: Grade tonnage curve

(measured and indicated resources)

Merriespruit: Grade tonnage curve

Unisel: Grade tonnage curve

(measured and indicated resources)

Free State operations cont.

Bambanani – Basal reef

Joel mine – Beatrix reef

Masimong mine – Basal reef

Masimong mine – B reef

Free State operations cont.

Phakisa mine, Tshepong mine – Basal reef

Target mine – Elsburg and Dreyerskuil reefs

Target mine

Free State operations cont.

Unisel – Basal reef

Unisel – Leader reef

West Rand

Doornkop

Geology

The structure of the West Rand goldfield is dominated by the Witpoortjie and Panvlakte Horst blocks, which are superimposed over broad folding associated with the south-east plunging West Rand syncline. At the Doornkop mine, both the Kimberley Reef and the South Reef are exploited.

The Doornkop shaft lease area is bounded by and lies to the south-east of the major north-easterly striking Roodepoort Fault, which dips to the south and constitutes the southern edge of the Witpoortjie Horst Block or Gap. This Horst Block is comprised of the stratigraphically older sediments of the West Rand Group, the overlying Central Rand Group sediments having been removed by erosion. A number of other faults, forming part of and lying south-east of the Roodepoort Fault, including the Saxon Fault, also constitute conspicuous structural breaks. A second major fault, the Doornkop Fault, which trends in an east-west direction occurs towards the southern portion of the lease area. This fault dips to the south and has an up-throw to the north.

Nearly the entire upper Witwatersrand section is present in the Doornkop lease area and therefore all the major zones are present, though, due to the distance of the area from the fan head, the number of economic bands and their payability is limited. Eight of the well-known reefs are present in the area, but only the Kimberley Reef and South Reef are considered viable at this stage.

The resource is concentrated in the Kimberley and South Reefs. The Kimberley Reef is contained in the Vlakfontein member of the Westonaria Formation. This reef, also known as the K9 Reef horizon, rests on an unconformity and is a complex multi-pulse conglomerate, which can be separated into four facies or cycles. All four cycles consist on average of an upper conglomerate and a lower quartzite. The characteristics of every cycle are area-dependent and the grades are variable within each cycle.

The South Reef is approximately 900 metres below the current Kimberley Reef mining area, and between 7.5 and 60 metres above the Main Reef horizon. The hanging wall to the South Reef consists of siliceous quartzites with non-persistent bands of 'blue-shot' grit and thin argillite partings. The footwall to the South Reef is a light coloured and fairly siliceous quartzite. Secondary conglomerate bands and stringers in the hanging wall and footwall of the South Reef may contain sporadic gold values.

The general strike of the reef is east-west, with a dip from 10 to 20 degrees. The orebody at Doornkop has a strike length of 4 kilometres and a width of 4 kilometres from west to east.

Kusasalethu

Geology

The structure of the orebody on the Far West Rand is dominated by a series of east-trending normal faults with throws of up to 40 metres, as well as a series of north-north-east striking normal faults with generally smaller displacements in the north-west. Faulting is generally less prevalent than in other Witwatersrand Basin goldfields. The primary reefs exploited are the Ventersdorp Contact Reef (VCR) and the Carbon Leader, which are 900 to 1 300 metres apart, increasing from east to west. Secondary targets are the Middelvlei Reef (50 to 75 metres above the Carbon Leader) and the Mondeor Conglomerate Reef Zone, which sub-crops beneath the VCR at Deelkraal and on the western side of Kusasalethu.

Doornkop

Gold – Mineral resources

	Measured		Indicated			Inferred					Total					
	Tonne	es	Gold (000	Gold (000	Tonnes	;	Gold (000	Gold (000	Tonne	s	Gold (000	Gold (000	Tonnes	;	Gold (000	Gold (000
Operations	(Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	oz)	Mt)	g/t	kg)	OZ)	(Mt)	g/t	kg)	oz)
Underground																
Doornkop																
Kimberley Reef	31.8	2.22	71	2 269	50.4	1.86	93	3 006	177.9	1.81	321	10 335	260.1	1.87	486	15 610
South Reef	1.0	7.08	7	229	1.9	6.42	12	398	20.0	8.35	167	5 366	22.9	8.13	186	5 993
Grand total	32.8	2.37	78	2 498	52.3	2.01	105	3 404	197.9	2.47	488	15 701	283.0	2.37	672	21 603

Modifying factors

Operations	MCF (%)	SW (cm)	MW (cm)	PRF (%)
Doornkop				
Kimberley Reef	95	434	434	95
South Reef	75	124	151	95

MCF = Mine call factor MW = N

SW = Stoping width

MW = Milling width PRF = Plant recovery factor

Gold – Mineral reserves

		roved			Probable				Total			
Operations	Tonnes (Mt)	g/t	Gold (000 kg)	Gold (000 oz)	Tonnes (Mt)	g/t	Gold (000 kg)	Gold (000 oz)	Tonnes (Mt)	g/t	Gold (000 kg)	Gold (000 oz)
Underground												
Doornkop												
Kimberley Reef	0.9	1.79	2	53	1.0	2.16	2	68	1.9	1.98	4	121
South Reef	0.7	5.06	3	107	1.5	4.41	7	209	2.1	4.61	10	316
Grand total	1.6	3.13	5	160	2.5	3.6	9	277	4.0	3.5	14	437

Doornkop South Reef: Grade tonnage curve

(measured and indicated resources)

Cooke 1/Doornkop geological section looking west Not to scale

Doornkop cont.

Doornkop mine – South reef

Doornkop mine – Kimberley reef

Kusasalethu

Gold – Mineral resources

	Measured Indi			Indica	icated Inferred					Total						
	Tonne	S	Gold (000	Gold (000	Tonne	S	Gold (000	Gold (000	Tonne	S	Gold (000	Gold (000	Tonne	S	Gold (000	Gold (000
Operations	(Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	oz)	Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	OZ)
Underground																
Kusasalethu	13.0	9.46	123	3 957	24.8	8.97	223	7 169	1.5	9.35	14	440	39.3	9.15	360	11 566
Grand total	13.0	9.46	123	3 957	24.8	8.97	223	7 169	1.5	9.35	14	440	39.3	9.15	360	11 566

Modifying factors

Operations	MCF (%)	SW (cm)	MW (cm)	PRF (%)
Kusasalethu	87	129	158	96
MCF = Mine call factor	MV	V = Millin	g width	
SW = Stoping width	PR	F = Plant	recovery i	factor

Gold – Mineral reserves

		Pr	oved			Pro	bable		Total			
	Tonnes		Gold (000	Gold (000	Tonnes		Gold (000	Gold (000	Tonnes		Gold (000	Gold (000
Operations	(Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	oz)
Underground												
Kusasalethu	12.4	6.70	83	2 680	23.4	6.42	150	4 834	35.9	6.51	234	7 514
Grand total	12.4	6.70	83	2 680	23.4	6.42	150	4 834	35.9	6.51	234	7 514

Kusasalethu cont.

Kusasalethu – Section through main shaft and sub-shaft looking east – Not to scale

Doornkop, South Africa

Kusasalethu: Grade tonnage curve

Kusasalethu Ventersdorp Contact Reef (VCR)

East Rand

Evander

Geology

The Evander Basin is a tectonically preserved sub-basin outside the main Witwatersrand Basin and forms an asymmetric syncline, plunging to the north-east. It is structurally complex with a series of east-north-east striking normal faults. At the south-east margin of the basin, vertically to locally overturned reef is present. The only economic reef horizon exploited in the Evander Basin is the Kimberley Reef. The Intermediate Reef is generally poorly mineralised, except where it erodes the sub-cropping Kimberley Reef to the south and west of the basin.

	Measured				Indicated			Inferred				Total				
Operations	Tonne (Mt)	es g/t	Gold (000 kg)	Gold (000 oz)	Tonne (Mt)	s g/t	Gold (000 kg)	Gold (000 oz)	Tonne Mt)	s g/t	Gold (000 kg)	Gold (000 oz)	Tonne: (Mt)	s g/t	Gold (000 kg)	Gold (000 oz)
Underground																
Evander 8 Evander 9	3.7 0.1	14.02 13.69	52 2	1 659 50	3.6 0.1	15.51 13.99	56 1	1 805 31	12.4 0.6	11.13 11.57	138 7	4 446 240	19.7 0.8	12.47 12.07	246 10	7 910 321
Total	3.8	14.2	54	1 709	3.7	15.48	57	1 836	13	11.15	145	4 686	20.5	12.46	256	8 231
Projects - Belo Evander South Rolspruit Poplar	w Infra – – –	structu – –	re _ _ _	- - -	23.9 29.1 17.2	5.35 11.59 9.28	128 337 159	4 107 10 847 5 123	40.4 4.9 -	3.08 5.69 –	125 28 _	4 006 902 –	64.3 34.0 17.2	3.92 10.74 9.28	253 365 159	8 113 11 749 5 123
Total	_	_	-	-	70.2	8.90	624	20 077	45.3	3.36	153	4 908	115.5	6.73	776	24 985
Subtotal	3.8	14.01	53	1 709	73.9	9.23	681	21 913	58.3	5.11	298	9 594	136	7.59	1 032	33 216
Surface																
Libra Project	_	-	_	-	202.9	0.29	59	1 897	-	-	-	-	202.9	0.29	59	1 897
Total	-	-	-	-	202.9	0.29	59	1 897	-	-	-	-	202.9	0.29	59	1 897
Grand total	3.8	14.01	53	1 709	276.8	2.68	740	23 810	58.3	5.11	298	9 594	338.9	3.22	1 091	35 113

Gold – Mineral resources

Modifying factors

Operations	MCF (%)	SW (cm)	MW (cm)	PRF (%)
Evander 8	74	120	169	96
Rolspruit	80	110	137	95
Poplar	70	110	139	95

MCF = Mine call factor MW = Milling width

SW = Stoping width PRF =

PRF = Plant recovery factor

Operations	MCF (%)	PRF (%)
Libra Project	100	45

MCF = Mine call factor PRF = Plant recovery factor

Gold – Mineral reserves

		Pro	oved			Proba	able		Total				
			Gold	Gold			Gold	Gold			Gold	Gold	
	Tonnes		(000	(000)	Tonnes		(000	(000)	Tonnes		(000	(000	
Operations	(Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	oz)	
Underground													
Evander 8	2.2	7.20	16	520	1.6	9.12	15	470	3.8	8.00	31	990	
Total	2.2	7.20	16	520	1.6	9.12	15	470	3.8	8.00	31	990	
Projects - Below Infr	astructure												
Rolspruit	-	_	-	-	26.2	8.08	211	6 790	26.2	8.08	211	6 790	
Poplar	-	-	-	-	16.1	5.99	97	3 105	16.1	5.99	97	3 105	
Total	-	_	-	-	42.3	7.28	308	9 895	42.3	7.28	308	9 895	
Subtotal	2.2	7.20	16	520	43.9	7.35	323	10 365	46.1	7.34	339	10 885	
Surface													
Libra Project	_	_	-	_	202.9	0.29	59	1 897	202.9	0.29	59	1 897	
Total	_	_	-	_	202.9	0.29	59	1 897	202.9	0.29	59	1 897	
Grand total	2.2	7.20	16	520	246.8	1.55	382	12 262	249.0	1.60	398	12 782	

Section across Evander Basin

Not to scale

Evander operations

Evander 8 shaft and 9 shaft, Poplar, Rolspruit and Evander South - Kimberley reef

Far West

Kalgold Geology

The Kalgold operation is located within the Kraaipan Greenstone Belt, 60 kilometres south of Mafikeng. This belt is part of the larger Amalia-Kraaipan Greenstone terrain, consisting of north trending linear belts of Archaean meta-volcanic and metasedimentary rocks, separated by granitoid units. Mineralisation occurs in shallow dipping quartz veins, which occur in clusters or swarms, within the steeply dipping magnetitechert banded iron formation. Disseminated sulphide mineralisation, dominated mostly by pyrite, occurs around and between the shallow dipping quartz vein swarms. The D Zone, the largest orebody encountered here, has been extensively mined within a single open-pit operation, along a strike length of 1 300 metres. Mineralisation has also been found in the Mielie Field Zone (adjacent to the D Zone), the A Zone and A Zone West (along strike to the north of the D Zone), and the Watertank and Windmill areas to the north of the A Zone.

Gold - Mineral resources

	Ν		Indica	ted			Inferr	ed		Total					
	Tonnes	Gold (000	Gold (000	Tonne	S	Gold (000	Gold (000	Tonne	S	Gold (000	Gold (000	Tonnes	5	Gold (000	Gold (000
Operations	(Mt) g/	't kg)	oz)	(Mt)	g/t	kg)	oz)	Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	oz)
Kalgold	34.0 0.3	36 29	944	63.8	0.94	60	1 922	27.2	0.93	25	818	125.0	0.92	115	3 684
Grand total	34.0 0.8	36 29	944	63.8	0.94	60	1 922	27.2	0.93	25	818	125.0	0.92	115	3 684

Modifying factors

Operations	MCF (%)	Dilution (%)	PRF (%)
Kalgold	100	2	85
MCF = Mine call factor	PRF = P	lant recovery f	actor

Gold – Mineral reserves

		Р	roved			Pro	bable		Total			
	Tonnes		Gold (000	Gold (000	Tonnes		Gold (000	Gold (000	Tonnes		Gold (000	Gold (000
Operations	(Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	oz)
Kalgold	21.9	0.82	18	575	7.5	1.07	8	258	29.4	0.88	26	833
Grand total	21.9	0.82	18	575	7.5	1.07	8	258	29.4	0.88	26	833

3D view of Watertank pit Waste dump A-Zone Waste dum Slimes dam north Topsoil dump A Zone Legend Waste dum Mining right area south Pit outline D Zone Waste dump outline Mined out

Kimberley reef

800

400

Metres

200

Papua New Guinea Mineral resources and mineral reserves

Geology

PNG lies at the northern end of the Australian Plate and has three major components: a continental cratonic platform, an arc of volcanic islands and a central collisional fold belt, consisting of Mesozoic sediments, ophiolite sequences, tertiary sediments and diorite intrusions. During collision, the Wau Graben, the host of major gold and silver deposits, was formed in the fold belt. It coincided with a phase of volcanic activity, resulting in precious and base metals deposits being formed. These include epithermal gold deposits at Hidden Valley, Hamata, Kerimenge and Wafi and porphyry-style copper deposits such as Golpu. Numerous other gold and copper-gold prospects, which are at various stages of exploration and evaluation, occur on Harmony's lease areas.

Note: The mineral resources and mineral reserves detailed in the following tables represent Harmony's 50% equity portion of the Morobe Mining Joint Ventures.

		Меа	sured		Indicated				Inferred				Total			
Operations	Tonne (Mt)	es g/t	Gold (000 kg)	Gold (000 oz)	Tonne: (Mt)	s g/t	Gold (000 kg)	Gold (000 oz)	Tonne Mt)	s g/t	Gold (000 kg)	Gold (000 oz)	Tonne (Mt)	s g/t	Gold (000 kg)	Gold (000 oz)
Hidden Valley	4.2	2.08	9	282	33.1	1.71	57 7	1 819	10.9	1.28	14 1	449	48.2	1.64	80	2 550
Wafi	-	-	-	-	31.9	2.34 1.97	63	2 017	19.8	1.73	34	1 099	51.7	1.88	97	3 116
Golpu Nambonga	-	_	-	-	44.9 -	0.65 -	29 _	935 –	205.4 19.9	0.52 0.79	107 16	3 440 505	250.3 19.9	0.54 0.79	136 16	4 375 505
Grand total	4.3	2.07	9	287	112.8	1.38	156	4 992	256.4	0.67	172	5 530	373.4	0.90	337	10 809

Gold – Mineral resources

Papua New Guinea - Mineral resources and mineral reserves cont.

Modifying factors

Operations	MCF (%)	PRF (%)
Hidden Valley	95	91
Hamata	95	92
Golpu	100	56

MCF = Mine call factor PRF = Plant recovery factor

Gold – Mineral reserves

		Pr	oved			Prob	able		Total				
	Tonnes		Gold (000	Gold (000	Tonnes		Gold (000	Gold (000	Tonnes		Gold (000	Gold (000	
Operations	(Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	oz)	
Hidden Valley	3.8	2.14	8	260	24.3	1.99	43	1 382	28.1	1.82	51	1 642	
Hamata	-	_	-	-	2.9	2.00	6	196	2.9	2.10	6	196	
Golpu	_	-	-	-	35.4	0.61	22	694	35.4	0.61	22	694	
Grand total	3.8	2.14	8	260	62.6	1.13	71	2 272	66.4	1.19	79	2 532	

Silver – Mineral resources

	Measured Ir					Indicated				Inferred				Total			
			Silve	r Silver			Silver	Silver			Silver	Silver			Silver	Silver	
	Tonne	S	(000	(000	Tonne	S	(000	(000	Tonnes	5	(000	(000	Tonne	s	(000	(000	
Operations	(Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	oz)	Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	oz)	
Hidden Valley	4.2	35.00	147	4 739	33.1	33.40	1 105	35 537	10.9	31.10	340	10 920	48.2	33.02	1 592	51 196	
Grand total	4.2	35.00	147	4 739	33.1	33.40	1 105	35 537	10.9	31.10	340	10 920	48.2	33.02	1,592	51 196	

Modifying factors

Operations	MCF (%)	PRF (%)
Hidden Valley	100	77

MCF = Mine call factor PRF = Plant recovery factor

Silver – Mineral reserves

		Pi	roved			Prob	able		Total				
	Tonnes		Silver	Silver	Tonnes		Silver	Silver	Tonnes		Silver	Silver	
Operations	(Mt)	g/t	kg)	(000 0Z)	(Mt)	g/t	kg)	oz)	(Mt)	g/t	kg)	(000 0Z)	
Hidden Valley	3.8	35.58	134	4 320	24.3	35.52	862	27 726	28.1	35.53	997	32,046	
Grand total	3.8	35.58	134	4 320	24.3	35.52	862	27 726	28.1	35.53	997	32 046	

Copper – Mineral resources

	r	sured		Indicated					Inferr	ed		Total				
	Tonnes		Cu	Cu	Tonnes	S	Cu	Cu	Tonne	S	Cu	Cu	Tonne	S	Cu	Cu
Operations	(Mt)	%	(Mkg)	(Mlb)	(Mt)	%	(Mkg)	(Mlb)	Mt)	%	(Mkg)	(Mlb)	(Mt)	%	(Mkg)	(Mlb)
Golpu	_	_	_	-	44.9	1.38	621	1 369	205.4	0.86	1 763	3 886	250.3	0.95	2 384	5 255
Nambonga	_	-	-	-	_	_	-	-	19.9	0.22	44	97	19.9	0.22	44	97
Grand total	-	-	-	-	44.9	1.38	621	1 369	225.3	0.80	1 807	3 983	270.2	0.90	2 428	5 352

Modifying factors

Operations	MCF	PRF
	(%)	(%)
Golpu	100	88
MCF = Mine call factor	PRF = Plant recovery	factor

Copper – Mineral reserves

		roved		Probable				Total				
	Tonnes		Cu	Cu	Tonnes		Cu	Cu	Tonnes		Cu	Cu
Operations	(Mt)	%	(Mkg)	(Mlb)	(Mt)	%	(Mkg)	(Mlb)	(Mt)	%	(Mkg)	(Mlb)
Golpu	-	_	-	-	35.4	1.13	400	882	35.4	1.13	400	882
Grand total	-	-	-	-	35.4	1.13	400	882	35.4	1.13	400	882

Molybdenum – Mineral resources

	Measured			Indicated				Inferred				Total				
	Tonnes	;	Мо	Мо	Tonnes	S	Мо	Мо	Tonne	S	Мо	Мо	Tonnes	;	Мо	Мо
Operations	(Mt)	ppm	(Mkg)	(Mlb)	(Mt)	ррт	(Mkg)	(Mlb)	Mt)	ррт	(Mkg)	(Mlb)	(Mt)	ppm	(Mkg)	(Mlb)
Golpu	_	_	_	-	44.9	107.72	5	11	205.4	111.33	23	50	250.3	110.68	28	61
Grand total	-	-	-	-	44.9	107.72	5	11	205.4	111.33	23	50	250.3	110.68	28	61

Papua New Guinea – Mineral resources and mineral reserves cont.

Modifying factors

Operations		MCF	PRF
		(%)	(%)
Golpu		100	36
	005	Diant un an un un	(

MCF = Mine call factor PRF = Plant recovery factor

Molybdenum – Mineral reserves

	Proved					Probable				Total			
	Tonnes		Мо	Мо	Tonnes		Мо	Мо	Tonnes		Мо	Мо	
Operations	(Mt)	ppm	(Mkg)	(Mlb)	(Mt)	ppm	(Mkg)	(Mlb)	(Mt)	ррт	(Mkg)	(Mlb)	
Golpu	-	-	_	-	35.4	121.00	4	9	35.4	121.00	4	9	
Grand total	-	-	-	-	35.4	121.00	4	9	35.4	121.00	4	9	

Hamata open pit

Hidden Valley

Wafi-Golpu project

Golpu block cave, Wafi Project

Appendix

Reporting code

Harmony uses the South African Code for the Reporting of Exploration Results, Mineral Resources and Mineral Reserves (SAMREC Code), which sets out the internationally recognised procedures and standards for reporting of mineral resources and ore/mineral reserves in South Africa. This code was developed by the South African Institute of Mining and Metallurgy and is the recommended guideline for reserve and resource reporting for companies listed on the JSE Limited. Harmony's reporting of its Australian and PNG mineral resources and mineral reserves also complies with the Australian Code for the Reporting of Mineral Resources and Mineral Resources and Mineral Resources and Mineral Resources and mineral reserves, distinct cognisance has also been taken of Industry Guide 7 of the United States Securities Exchange Commission.

Definitions as per the SAMREC code

Mineral resources

A mineral resource is a concentration (or occurrence) of material of economic interest in or on the earth's crust in such form, quality and quantity that there are reasonable and realistic prospects for eventual economic extraction. The location, quantity, grade, continuity and other geological characteristics of a mineral resource are known, estimated from specific geological evidence and knowledge, or are interpreted from a well constrained and portrayed geological model.

Mineral resources are sub-divided in order of increasing confidence in respect of geoscientific evidence into inferred, indicated and measured categories.

An **inferred mineral resource** is that part of a mineral resource for which tonnage, grade and mineral content can be estimated with a low level of confidence. It is inferred from geological evidence and sampling, and assumed but not verified geologically and/or through analysis of grade continuity. It is based on information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that may be limited or of uncertain quality and reliability.

An **indicated mineral resource** is that part of a mineral resource for which tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence. It is based on exploration, sampling and the testing of information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes. The locations are too widely or inappropriately spaced to confirm geological and/or grade continuity but are spaced closely enough for continuity to be assumed.

A measured mineral resource is that part of a mineral resource for which tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence. It is based on detailed and reliable exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes. The locations are spaced closely enough to confirm geological and grade continuity.

Mineral reserves

A mineral reserve is the economically mineable material derived from a measured and/or indicated mineral resource. It includes diluting and contaminating materials and allows for losses that are expected to occur when the material is mined. Appropriate assessments to a minimum of a pre-feasibility study for a project, or a life of mine plan for an operation, must have been carried out, including consideration of, and modification by, realistically assumed mining, metallurgical, economic, marketing, legal, environmental, social and governmental factors (the modifying factors). Such modifying factors must be disclosed.

A **probable mineral reserve** is the economically mineable material derived from a measured and/or indicated mineral resource. It is estimated with a lower level of confidence than a proved mineral reserve. It includes diluting and contaminating materials and allows for losses that are expected to occur when the material is mined. Appropriate assessments to a minimum of a pre-feasibility study for a project, or a life of mine plan for an operation, must have been carried out, including

consideration of, and modification by, realistically assumed mining, metallurgical, economic, marketing, legal, environmental, social and governmental factors. Such modifying factors must be disclosed.

A proved mineral reserve is the economically mineable material derived from a measured mineral resource. It is estimated with a high level of confidence. It includes diluting and contaminating materials and allows for losses that are expected to occur when the material is mined. Appropriate assessments to a minimum of a pre-feasibility study for a project, or a life of mine plan for an operation, must have been carried out, including consideration of, and modification by, realistically assumed mining, metallurgical, economic, marketing, legal, environmental, social and governmental factors. Such modifying factors must be disclosed.

Harmony reporting in compliance with SAMREC

In order to meet the requirements of the SAMREC code that the material reported as a mineral resource should have "reasonable and realistic prospects for eventual economic extraction", Harmony has determined an appropriate cut-off grade which has been applied to the quantified mineralised body according to a process incorporating a long-term view on future economic modifying factors. In applying this process, Harmony uses a gold price of R370 000/kg to derive a cut-off grade to determine the mineral resources at each of its South African underground operations. Mineral resources have been estimated on the basis of geoscientific knowledge with input from the company's mineral reserve managers, geologists and geostatistical staff. Each mine's mineral resources are categorised, blocked-out and ascribed an estimated value. At most mines computerised geostatistical estimation processes are used.

In order to define that portion of a measured and indicated mineral resource that can be converted to a proved and probable mineral reserve, Harmony applies the concept of a cut-off grade. At our underground South African mines, this is done by defining the optimal cut-off as the lowest grade at which an orebody can be mined such that the total profits, under a specified set of mining parameters, are maximised. The cut-off grade is determined using the company's Optimiser software which requires the following as input: the database of measured and indicated resource blocks (per shaft section); an assumed gold price which, for this mineral reserve statement, was taken as R250 000/kg; planned production rates; the mine recovery factor (MRF) which is equivalent to the mine call factor (MCF) multiplied by the plant recovery factor (PRF); and planned cash operating costs (rand per tonne). Rand per tonne cash operating costs are historically based but take cognisance of distinct changes in the cost environment such as restructuring, right-sizing, and other cost reduction initiatives, and for below-infrastructure ounces, an estimate of capital expenditure.

The block cave reserve at Golpu in PNG uses PCBC software to define the optimal mine plan and sequencing. The open-pit reserve at Hidden Valley in PNG is constrained by the capacity of the tailings storage facility with the Whittle optimisation programme guiding the most efficient mine design given this constraint.

The mineral reserves represent that portion of the measured and indicated resources above cutoff in the life-of-mine plan and have been estimated after consideration of the factors affecting extraction, including mining, metallurgical, economic, marketing, legal, environmental, social, and governmental factors.

A range of disciplines, including geology, survey, planning, mining engineering, rock engineering, metallurgy, financial management, human resources management and environmental management, has been involved at each mine in the life-of-mine planning process and the conversion of resources into reserves.

The modifying factors related to the oreflow that are used to convert the mineral resources to mineral reserves through the lifeof-mine planning process are stated for each individual shaft. For these factors, historical information is used, except if there is a valid reason to do otherwise. As a result of the depth at which mining occurs and the resulting rock engineering requirements at our South African underground mines, some shafts include stope support pillars into the design of their mining layouts which accounts for discounts of 7% to 10%. A further 15% discount is applied as a life-of-mine factor to provide for unpay and off-reef mining. In general, life-of-mine plan extraction factors do not exceed 85% and are reflected in the mineral reserves.

Tshepong, South Africa

Glossary of geological terms

Below infrastructure	That part of a company's mineral reserve that can only be accessed following certain capital expenditure which has yet to be approved.
Craton	A part of the earth's crust that has attained stability and has been little deformed for a long period of geological time.
Diorite	A group of plutonic rocks intermediate in composition between acidic and basic.
Felsic:	An igneous rock having abundant light coloured minerals.
Graben	A block of rock that lies between two faults and has moved downward to form a depression between two adjacent fault blocks.
Greenstone	A field term for any compact dark green altered or metamorphosed basic igneous rock that owes its colour to chlorite.
Horst	A block of rock that lies between two faults and has moved upward relative to the two adjacent fault blocks.
Kaapvaal Craton	The ancient protocontinental basement of South Africa.
Lacustrine	Pertaining to sediments formed in lakes.
Mafic	An igneous rock composed chiefly of dark, ferromagnesium minerals.
Ophiolite	A group of mafic and ultramafic igneous rocks derived by metamorphism, whose origin is associated with an early phase of the development of a geosyncline.
Plunge	The inclination of a fold axis or other linear feature, measured in the vertical plane.
Sub-outcrop	A rock stratum that unconformably underlies another rock stratum.
Syncline	Concave fold in stratified rock, in which strata dip down to meet in a trough.
Witwatersrand Basin	A sedimentary basin in South Africa.