

HARMONY

CDP carbon and water disclosure 30 June 2025

years of Mining with purpose

Harmony Gold Mining Co Ltd

2025 CDP Corporate Questionnaire 2025

Word version

Important: this export excludes unanswered questions

This document is an export of your organization's CDP questionnaire response. It contains all data points for questions that are answered or in progress. There may be questions or data points that you have been requested to provide, which are missing from this document because they are currently unanswered. Please note that it is your responsibility to verify that your questionnaire response is complete prior to submission. CDP will not be liable for any failure to do so.

Read full terms of disclosure

.

Contents

C1. Introduction	8
(1.1) In which language are you submitting your response?	
(1.2) Select the currency used for all financial information disclosed throughout your response.	
(1.3) Provide an overview and introduction to your organization.	8
(1.4) State the end date of the year for which you are reporting data. For emissions data, indicate whether you will be providing emissions data for past reporting years	9
(1.4.1) What is your organization's annual revenue for the reporting period?	9
(1.5) Provide details on your reporting boundary.	10
(1.6) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?	10
(1.7) Select the countries/areas in which you operate	12
(1.17) In which part of the metals and mining value chain does your organization operate?	13
(1.18) Provide details on the mining projects covered by this disclosure, by specifying your project(s) type, location and mining method(s) used	13
(1.24) Has your organization mapped its value chain?	35
(1.24.1) Have you mapped where in your direct operations or elsewhere in your value chain plastics are produced, commercialized, used, and/or disposed of?	36
C2. Identification, assessment, and management of dependencies, impacts, risks, and opportunities	38
(2.1) How does your organization define short-, medium-, and long-term time horizons in relation to the identification, assessment, and management of your environment dependencies, impacts, risks, and opportunities?	tal
(2.2) Does your organization have a process for identifying, assessing, and managing environmental dependencies and/or impacts?	39
(2.2.1) Does your organization have a process for identifying, assessing, and managing environmental risks and/or opportunities?	40
(2.2.2) Provide details of your organization's process for identifying, assessing, and managing environmental dependencies, impacts, risks, and/or opportunities	40
(2.2.7) Are the interconnections between environmental dependencies, impacts, risks and/or opportunities assessed?	45
(2.3) Have you identified priority locations across your value chain?	46
(2.4) How does your organization define substantive effects on your organization?	47
(2.5) Does your organization identify and classify potential water pollutants associated with its activities that could have a detrimental impact on water ecosystems or human health?	50
(2.5.1) Describe how your organization minimizes the adverse impacts of potential water pollutants on water ecosystems or human health associated with your activities	
(2.6) By river basin, what number of active and inactive tailings dams are within your control?	52

(2.6.1) Do you evaluate and classify the tailings dams under your control according to the consequences of their failure to human health and ecosystems?	53
(2.6.2) Provide details for all dams classified as 'hazardous' or 'highly hazardous'.	54
(2.6.3) To manage the potential impacts to human health or water ecosystems associated with the tailings dams in your control, what procedures are in place for dams?	
3. Disclosure of risks and opportunities	79
(3.1) Have you identified any environmental risks which have had a substantive effect on your organization in the reporting year, or are anticipated to have a sub effect on your organization in the future?	
(3.1.1) Provide details of the environmental risks identified which have had a substantive effect on your organization in the reporting year, or are anticipated to h substantive effect on your organization in the future.	
(3.1.2) Provide the amount and proportion of your financial metrics from the reporting year that are vulnerable to the substantive effects of environmental risks.	86
(3.2) Within each river basin, how many facilities are exposed to substantive effects of water-related risks, and what percentage of your total number of facilities represent?	
(3.3) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?	90
(3.4) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for violation of biodiversity-related regulation?	91
(3.5) Are any of your operations or activities regulated by a carbon pricing system (i.e. ETS, Cap & Trade or Carbon Tax)?	91
(3.5.1) Select the carbon pricing regulation(s) which impact your operations	91
(3.5.3) Complete the following table for each of the tax systems you are regulated by.	92
(3.5.4) What is your strategy for complying with the systems you are regulated by or anticipate being regulated by?	92
(3.6) Have you identified any environmental opportunities which have had a substantive effect on your organization in the reporting year, or are anticipated to ha substantive effect on your organization in the future?	
(3.6.1) Provide details of the environmental opportunities identified which have had a substantive effect on your organization in the reporting year, or are anticipate the substantive effect on your organization in the future	
(3.6.2) Provide the amount and proportion of your financial metrics in the reporting year that are aligned with the substantive effects of environmental opportuni	ities 100
4. Governance	102
(4.1) Does your organization have a board of directors or an equivalent governing body?	102
(4.1.1) Is there board-level oversight of environmental issues within your organization?	103
(4.1.2) Identify the positions (do not include any names) of the individuals or committees on the board with accountability for environmental issues and provide the board's oversight of environmental issues.	
(4.2) Does your organization's board have competency on environmental issues?	107
(4.3) Is there management-level responsibility for environmental issues within your organization?	108

(4.3.1) Provide the highest senior management-level positions or committees with responsibility for environmental issues (do not include the names of individual include the names).	duals) 109
(4.5) Do you provide monetary incentives for the management of environmental issues, including the attainment of targets?	112
(4.5.1) Provide further details on the monetary incentives provided for the management of environmental issues (do not include the names of individuals)	113
(4.6) Does your organization have an environmental policy that addresses environmental issues?	125
(4.6.1) Provide details of your environmental policies.	125
(4.10) Are you a signatory or member of any environmental collaborative frameworks or initiatives?	128
(4.11) In the reporting year, did your organization engage in activities that could directly or indirectly influence policy, law, or regulation that may (positively or impact the environment?	• • • • • • • • • • • • • • • • • • • •
(4.11.1) On what policies, laws, or regulations that may (positively or negatively) impact the environment has your organization been engaging directly with potential policies, laws, or regulations that may (positively or negatively) impact the environment has your organization been engaging directly with potential policies.	-
(4.11.2) Provide details of your indirect engagement on policy, law, or regulation that may (positively or negatively) impact the environment through trade assorther intermediary organizations or individuals in the reporting year.	
(4.12) Have you published information about your organization's response to environmental issues for this reporting year in places other than your CDP response to environmental issues for this reporting year in places other than your CDP response to environmental issues for this reporting year in places other than your CDP response to environmental issues for this reporting year in places other than your CDP response to environmental issues for this reporting year in places other than your CDP response to environmental issues for this reporting year in places other than your CDP response to environmental issues for this reporting year in places other than your CDP response to environmental issues for this reporting year in places other than your CDP response to environmental issues for this reporting year.	onse? 140
(4.12.1) Provide details on the information published about your organization's response to environmental issues for this reporting year in places other than y response. Please attach the publication.	
5. Business strategy	142
(5.1) Does your organization use scenario analysis to identify environmental outcomes?	142
(5.1.1) Provide details of the scenarios used in your organization's scenario analysis.	142
(5.1.2) Provide details of the outcomes of your organization's scenario analysis.	159
(5.2) Does your organization's strategy include a climate transition plan?	161
(5.3) Have environmental risks and opportunities affected your strategy and/or financial planning?	162
(5.3.1) Describe where and how environmental risks and opportunities have affected your strategy.	162
(5.3.2) Describe where and how environmental risks and opportunities have affected your financial planning	166
(5.4) In your organization's financial accounting, do you identify spending/revenue that is aligned with your organization's climate transition?	167
(5.5) Does your organization invest in research and development (R&D) of low-carbon products or services related to your sector activities?	168
(5.9) What is the trend in your organization's water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the antic for the next reporting year?	•
(5.10) Does your organization use an internal price on environmental externalities?	169
(5.10.2) Provide details of your organization's internal price on water.	169
(5.11) Do you engage with your value chain on environmental issues?	172

(5.11.1) Does your organization assess and classify suppliers according to their dependencies and/or impacts on the environment?	
(5.11.2) Does your organization prioritize which suppliers to engage with on environmental issues?	
(5.11.5) Do your suppliers have to meet environmental requirements as part of your organization's purchasing process?	177
(5.11.6) Provide details of the environmental requirements that suppliers have to meet as part of your organization's purchasing process, and the compliance measu place.	
(5.11.7) Provide further details of your organization's supplier engagement on environmental issues.	181
(5.11.9) Provide details of any environmental engagement activity with other stakeholders in the value chain.	184
C6. Environmental Performance - Consolidation Approach	188
(6.1) Provide details on your chosen consolidation approach for the calculation of environmental performance data	188
C7. Environmental performance - Climate Change	
(7.1) Is this your first year of reporting emissions data to CDP?	189
(7.2) Select the name of the standard, protocol, or methodology you have used to collect activity data and calculate emissions	189
(7.3) Describe your organization's approach to reporting Scope 2 emissions	189
(7.4) Are there any sources (e.g. facilities, specific GHGs, activities, geographies, etc.) of Scope 1, Scope 2 or Scope 3 emissions that are within your selected reporting boundary which are not included in your disclosure?	
(7.5) Provide your base year and base year emissions.	190
(7.6) What were your organization's gross global Scope 1 emissions in metric tons CO2e?	193
(7.7) What were your organization's gross global Scope 2 emissions in metric tons CO2e?	193
(7.8) Account for your organization's gross global Scope 3 emissions, disclosing and explaining any exclusions.	194
(7.9) Indicate the verification/assurance status that applies to your reported emissions.	201
(7.9.1) Provide further details of the verification/assurance undertaken for your Scope 1 emissions, and attach the relevant statements	202
(7.9.2) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements	203
(7.9.3) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements	204
(7.10) How do your gross global emissions (Scope 1 and 2 combined) for the reporting year compare to those of the previous reporting year?	205
(7.10.1) Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined), and for each of them specify how your emissions compare to previous year.	
(7.12) Are carbon dioxide emissions from biogenic carbon relevant to your organization?	207
(7.15) Does your organization break down its Scope 1 emissions by greenhouse gas type?	207
(7.15.1) Break down your total gross global Scope 1 emissions by greenhouse gas type and provide the source of each used global warming potential (GWP)	207
4	

(7.16) Break down your total gross global Scope 1 and 2 emissions by country/area.	208
(7.17) Indicate which gross global Scope 1 emissions breakdowns you are able to provide.	209
(7.17.1) Break down your total gross global Scope 1 emissions by business division.	209
(7.19) Break down your organization's total gross global Scope 1 emissions by sector production activity in metric tons CO2e.	209
(7.20) Indicate which gross global Scope 2 emissions breakdowns you are able to provide.	210
(7.20.1) Break down your total gross global Scope 2 emissions by business division.	210
(7.21) Break down your organization's total gross global Scope 2 emissions by sector production activity in metric tons CO2e.	210
(7.22) Break down your gross Scope 1 and Scope 2 emissions between your consolidated accounting group and other entities included in your response	211
(7.23) Is your organization able to break down your emissions data for any of the subsidiaries included in your CDP response?	212
(7.29) What percentage of your total operational spend in the reporting year was on energy?	212
(7.30) Select which energy-related activities your organization has undertaken.	212
(7.30.1) Report your organization's energy consumption totals (excluding feedstocks) in MWh	213
(7.30.4) Report your organization's energy consumption totals (excluding feedstocks) for metals and mining production activities in MWh	215
(7.30.6) Select the applications of your organization's consumption of fuel.	216
(7.30.7) State how much fuel in MWh your organization has consumed (excluding feedstocks) by fuel type.	217
(7.30.9) Provide details on the electricity, heat, steam, and cooling your organization has generated and consumed in the reporting year.	222
(7.30.12) Provide details on the electricity, heat, steam, and cooling your organization has generated and consumed for metals and mining production activities	224
(7.30.16) Provide a breakdown by country/area of your electricity/heat/steam/cooling consumption in the reporting year	224
(7.42) Provide details on the commodities relevant to the mining production activities of your organization.	226
(7.42.1) Provide details on the commodities relevant to the metals production activities of your organization.	228
(7.45) Describe your gross global combined Scope 1 and 2 emissions for the reporting year in metric tons CO2e per unit currency total revenue and provide any addit intensity metrics that are appropriate to your business operations	
(7.52) Provide any additional climate-related metrics relevant to your business.	232
(7.53) Did you have an emissions target that was active in the reporting year?	233
(7.53.1) Provide details of your absolute emissions targets and progress made against those targets.	233
(7.54) Did you have any other climate-related targets that were active in the reporting year?	237
(7.55) Did you have emissions reduction initiatives that were active within the reporting year? Note that this can include those in the planning and/or implementation phases.	
(7.55.1) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings	238
(7.55.2) Provide details on the initiatives implemented in the reporting year in the table below.	238

(7.55.3) What methods do you use to drive investment in emissions reduction activities?	241
(7.74) Do you classify any of your existing goods and/or services as low-carbon products?	243
(7.79) Has your organization retired any project-based carbon credits within the reporting year?	243
C9. Environmental performance - Water security	244
(9.1) Are there any exclusions from your disclosure of water-related data?	
(9.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?	244
(9.2.2) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, how do they compare to the previous repare they forecasted to change?	
(9.2.4) Indicate whether water is withdrawn from areas with water stress, provide the volume, how it compares with the previous reporting year, and ho change.	
(9.2.7) Provide total water withdrawal data by source	258
(9.2.8) Provide total water discharge data by destination	262
(9.2.9) Within your direct operations, indicate the highest level(s) to which you treat your discharge.	265
(9.2.10) Provide details of your organization's emissions of nitrates, phosphates, pesticides, and other priority substances to water in the reporting year	ar 268
(9.3) In your direct operations and upstream value chain, what is the number of facilities where you have identified substantive water-related dependent and opportunities?	•
(9.3.1) For each facility referenced in 9.3, provide coordinates, water accounting data, and a comparison with the previous reporting year	270
(9.3.2) For the facilities in your direct operations referenced in 9.3.1, what proportion of water accounting data has been third party verified?	342
(9.5) Provide a figure for your organization's total water withdrawal efficiency.	344
(9.10) Do you calculate water intensity information for your metals and mining activities?	345
(9.10.1) For your top 5 products by revenue, provide the following intensity information associated with your metals and mining activities	345
(9.13) Do any of your products contain substances classified as hazardous by a regulatory authority?	346
(9.14) Do you classify any of your current products and/or services as low water impact?	346
(9.15) Do you have any water-related targets?	347
(9.15.1) Indicate whether you have targets relating to water pollution, water withdrawals, WASH, or other water-related categories	348
(9.15.2) Provide details of your water-related targets and the progress made	
C10. Environmental performance - Plastics	
(10.1) Do you have plastics-related targets, and if so what type?	
(10.2) Indicate whether your organization engages in the following activities.	360

C	13. Further information & sign off	.364
	(13.1) Indicate if any environmental information included in your CDP response (not already reported in 7.9.1/2/3, 8.9.1/2/3/4, and 9.3.2) is verified and/or assured by third party?	а
	(13.1.1) Which data points within your CDP response are verified and/or assured by a third party, and which standards were used?	364
	(13.2) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is scored.	
	(13.3) Provide the following information for the person that has signed off (approved) your CDP response.	366
	(13.4) Please indicate your consent for CDP to share contact details with the Pacific Institute to support content for its Water Action Hub website.	367

C1. Introduction

(1.1) In which language are you submitting your response?

Select from:

English

(1.2) Select the currency used for all financial information disclosed throughout your response.

Select from:

✓ ZAR

(1.3) Provide an overview and introduction to your organization.

(1.3.2) Organization type

Select from:

✓ Publicly traded organization

(1.3.3) Description of organization

Harmony Gold Mining Company Limited ("Harmony") is a leading gold mining and exploration company with over 74 years of experience. Listed on the New York and Johannesburg Stock Exchanges, Harmony mines with purpose, creating shared value and leaving a lasting positive legacy where it operates. Sustainability is central to our strategy. We deliver on ESG commitments by integrating stakeholder needs, advancing climate and water stewardship, and aligning with ICMM principles, the UN Global Compact, the World Gold Council's Responsible Mining Principles, and the SDGs. In South Africa, Harmony operates mines in the Klerksdorp Goldfield, the West Wits region, and the Free State regions. Our underground operations in South Africa include Doornkop, Moab Khutsong, Kusasalethu, Mponeng, Tshepong, Target 1, Masimong, and Joel. Additionally, we operate the Kalgold open pit mine in the North-West province. Bambanani Plant is closed, however we are still reporting water and climate data from activities related to care and maintenance. In 2020, Harmony acquired the Mponeng operations, Covalent Water Company, and Mine Waste Solutions to expand and improve underground recovered grades, lowering its all-in sustaining costs, and improve operating free cash flow margins. Harmony's current surface retreatment operations in South Africa therefore include Mine Waste Solutions, Phoenix, Central Plant Reclamation, Waste Rock Dumps and Savuka. In Papua New Guinea, we own the Hidden Valley open-pit gold and silver mine and have a 50% stake in the Wafi Golpu copper-gold project located in the Morobe Province. For the Tier-1 Wafi-Golpu project, negotiations are progressing with Papua New Guinean government to secure its special mining lease. In 2022, Harmony acquired the Eva Copper project in Northern Queensland, Australia, which was designated a prescribed project by the Queensland Government in March 2024, recognising its social and economic significance. Harmony acknowledges and supports the goals of the Paris Agreement to limit global

this commitment, Harmony has adopted a Science Based Targets initiative (SBTi)-validated 1.5 °C near-term target to reduce absolute Scope 1 and 2 emissions by 63% by FY2036 from a FY2021 base year, alongside an ambition to achieve net zero by 2045. Progress is supported by regionally tailored energy strategies, including renewable energy programme in South Africa and ongoing work to develop aligned energy solutions across PNG and Australia. In FY24, the PV 1 smallscale solar PV plants generated ~65 GWh, while grid-sourced low-carbon power (predominantly hydropower) supplied a further ~76 GWh. Sungazer 2 is scheduled to break ground in FY2025, with 100 MW of solar PV at Moab Khotsong. Sungazer 3 & 3X PV projects will be constructed as a 108 MW project and we expanded our PV initiative to include an additional 100MW of solar PV at Mponeng as part of Sungazer 4, with the overall plan expanded to procure 798 MW, reflecting life-of-mine extensions and the enactment of South Africa's Climate Change Act. Since 2016, more than 200 cumulative energy-efficiency projects have been implemented. In PNG, Hidden Valley Mine's power supply mix of conventional and hydropower from the Ramu grid continues to face technical, climate-related and financial challenges impacting reliability. This requires backup diesel generation to meet electricity needs. In Australia, Harmony applied for environmental approval (subsequently approved in September 2024) to integrate a 100 MW solar farm and 65 MW battery energy storage system into the start-up energy solution for Eva Copper, achieving approximately 40% renewable energy penetration. Harmony is transitioning its climate-related disclosures to the International Financial Reporting Standards (IFRS) Sustainability Disclosure Standards, enhancing transparency and comparability across global markets. This shift also aligns with the introduction of the Australian Sustainability Reporting Standards (ASRS). Harmony is deepening its understanding of climate-related risks and opportunities by integrating scenario analysis, physical and transition risk assessments, and governance oversight into its strategic planning. Throughout the organization, Harmony has implemented standards, systems and campaigns to promote sustainable practices, including the reuse of process water and water awareness initiatives. In January 2024, Harmony shareholders approved two BBBEE transactions, the Employee Share Ownership Plan Trust and the Harmony Community Trust, further embedding shared value creation and responsible stewardship. These efforts aim to ensure responsible resource management and mitigate the impact of climate change on water availability and quality [Fixed row]

(1.4) State the end date of the year for which you are reporting data. For emissions data, indicate whether you will be providing emissions data for past reporting years.

End date of reporting year	Alignment of this reporting period with your financial reporting period	Indicate if you are providing emissions data for past reporting years
06/29/2024	Select from: ✓ Yes	Select from: ✓ No

[Fixed row]

(1.4.1) What is your organization's annual revenue for the reporting period?

(1.5) Provide details on your reporting boundary.			
	Is your reporting boundary for your CDP disclosure the same as that used in your financial statements?		
	Select from: ✓ Yes		
[Fixed row]			
(1.6) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?			
ISIN code - bond			
(1.6.1) Does your organization use this unique identifier?			
Select from: ✓ No			
ISIN code - equity			
(1.6.1) Does your organization use this unique identifier?			
Select from: ✓ Yes			
(1.6.2) Provide your unique identifier			
ZAE000015228			
CUSIP number			

(1.6.1) Does your organization use this unique identifier?
Select from: ✓ Yes
(1.6.2) Provide your unique identifier
413216300
Ticker symbol
(1.6.1) Does your organization use this unique identifier?
Select from: ✓ Yes
(1.6.2) Provide your unique identifier
JSE: HAR
SEDOL code
(1.6.1) Does your organization use this unique identifier?
Select from: ☑ No
LEI number
(1.6.1) Does your organization use this unique identifier?
Select from: ☑ Yes
(1.6.2) Provide your unique identifier

D-U-N-S number

(1.6.1) Does your organization use this unique identifier?

Select from:

✓ No

Other unique identifier

(1.6.1) Does your organization use this unique identifier?

Select from:

✓ No

Ticker symbol

(1.6.1) Does your organization use this unique identifier?

Select from:

Yes

(1.6.2) Provide your unique identifier

NYSE:HMY [Add row]

(1.7) Select the countries/areas in which you operate.

Select all that apply

- Australia
- ✓ Papua New Guinea
- ✓ South Africa

(1.17) In which part of the metals and mining value chain does your organization operate?		
Mining		
✓ Copper		
☑ Gold		
☑ Other metal mining, please specify :Uranium		
Processing		
☑ Gold		
✓ Silver		
☑ Other metals, please specify :Uranium		
(1.18) Provide details on the mining projects covered by this disclosure, by specifying your project(s) type, location and mining method(s) used.		
Row 1		
(1.18.1) Mining project ID		
Select from:		
✓ Project 1		
(1.18.2) Name		
Doornkop Mine		
(1.18.3) Share (%)		
100		
(1.18.4) Country/Area		
Select from:		

✓ South Africa

(1.18.5) Latitude

-26.217517

(1.18.6) Longitude

27.790908

(1.18.7) Project stage

Select from:

Production

(1.18.8) Mining method

Select from:

Underground

(1.18.9) Raw material(s)

Select all that apply

✓ Gold

(1.18.10) Year extraction started/is planned to start

1930

(1.18.11) Year of closure

2038

(1.18.12) Description of project

Doornkop is a deep-level, single-shaft operation in Gauteng, some 30km west of Johannesburg, on the northern rim of the Witwatersrand Basin. While a mature operation, Doornkop still has 14 years life-of-mine remaining and is focused on narrow-reef conventional mining of the gold-bearing conglomerate South Reef. Ore is processed at the Doornkop plant, which uses the carbon-in-pulp process to extract gold. In Gauteng, our operations are near urban areas and not in critically endangered, endangered or vulnerable biodiversity areas. We do however encounter near-threatened ecosystems or species.

Row 2

(1.18.1) Mining project ID

Select from:

✓ Project 2

(1.18.2) Name

Kusasalethu Mine

(1.18.3) Share (%)

100

(1.18.4) Country/Area

Select from:

✓ South Africa

(1.18.5) Latitude

-26.454481

(1.18.6) Longitude

27.3592

(1.18.7) Project stage

Select from:

✓ Production

(1.18.8) Mining method

Select from:

Underground

(1.18.9) Raw material(s)

Select all that apply

✓ Gold

(1.18.10) Year extraction started/is planned to start

2001

(1.18.11) Year of closure

2037

(1.18.12) Description of project

Kusasalethu is a mature, deep-level mine, 90km west of Johannesburg, near the Gauteng North-West provincial border. Mine infrastructure comprises twin vertical and twin sub-vertical shaft systems. Conventional mining methods are used in a sequential grid layout with mining depths reaching 3 388m below surface where the Ventersdorp Contact Reef is the primary orebody exploited. Ore mined is treated at the Mponeng plant. In Gauteng, our operations are near urban areas and not in critically endangered, endangered or vulnerable biodiversity areas but we encounter near-threatened ecosystems or species. We continue to minimise alien species' growth and infestation, aiming to eradicate these plants. Infested areas are mapped and divided into management units for prioritisation and appropriate planning. These efforts focus primarily on the Kusasalethu operation with some 5 000ha of the surface mining right area cleared of alien vegetation. Once an area is cleared, follow-up monitoring continues for a period.

Row 3

(1.18.1) Mining project ID

Select from:

✓ Project 3

(1.18.2) Name

Tshepong North Mine

(1.18.3) Share (%)

100

(1.18.4) Country/Area

Select from:

✓ South Africa

(1.18.5) Latitude

-27.86506

(1.18.6) Longitude

-27.86506

(1.18.7) Project stage

Select from:

✓ Production

(1.18.8) Mining method

Select from:

Underground

(1.18.9) Raw material(s)

Select all that apply

✓ Gold

(1.18.10) Year extraction started/is planned to start

1991

(1.18.11) Year of closure

2029

(1.18.12) Description of project

Tshepong North is a deep-level underground mining operation in the Free State, near the town of Welkom, some 250km from Johannesburg. Tshepong North is a mature underground operation that uses conventional undercut mining in the Basal Reef while the B Reef is exploited as a high-grade secondary reef. Ore mined is processed at the Harmony One plant, with gold recovered using the gold cyanide leaching process. Our Free State operations are in the endangered Vaal-Vet sandy grassland and the western Free State clay grassland ecosystem. No Red Data species have been identified although the commonly known threatened sungazer or giant girdled lizard and near-threatened lesser flamingo have been encountered in these habitats.

Row 4

(1.18.1) Mining project ID

Select from:

✓ Project 4

(1.18.2) Name

Target 1 Mine

(1.18.3) Share (%)

100

(1.18.4) Country/Area

Select from:

✓ South Africa

(1.18.5) Latitude

-27.76167

(1.18.6) Longitude

26.64444

(1.18.7) Project stage

Select from:

✓ Production

(1.18.8) Mining method

Select from:

Underground

(1.18.9) Raw material(s)

Select all that apply

✓ Gold

(1.18.10) Year extraction started/is planned to start

2001

(1.18.11) Year of closure

2026

(1.18.12) Description of project

Target 1 Mine is an advanced, single-shaft, deep-level mine in the Free State, some 270km south-west of Johannesburg. Mining operations use both mechanised and conventional stoping techniques. The gold mineralisation currently exploited is contained in a succession of Elsburg and Dreyerskuil quartz pebble conglomerate reefs. These reefs are mined to a depth of around 2 300m below surface. Ore mined is milled and processed at the Target plant, with gold recovered by means of

gold cyanide leaching. Our Free State operations are in the endangered Vaal-Vet sandy grassland and the western Free State clay grassland ecosystem. No Red Data species have been identified although the commonly known threatened sungazer or giant girdled lizard and near-threatened lesser flamingo have been encountered in these habitats.

Row 5

(1.18.1) Mining project ID

Select from:

✓ Project 5

(1.18.2) Name

Tshepong South Mine

(1.18.3) Share (%)

100

(1.18.4) Country/Area

Select from:

✓ South Africa

(1.18.5) Latitude

-27.90035

(1.18.6) Longitude

26.72501

(1.18.7) Project stage

Select from:

Production

(1.18.8) Mining method

Select from:

Underground

(1.18.9) Raw material(s)

Select all that apply

✓ Gold

(1.18.10) Year extraction started/is planned to start

1996

(1.18.11) Year of closure

2029

(1.18.12) Description of project

Tshepong South Mine is located in the Free State, near the town of Welkom, some 250km from Johannesburg. Tshepong South exploits the Basal reef with the B Reef mined as a high-grade secondary reef and uses the conventional undercut and opencut mining method. Rock from Tshepong South is transported via a railveyor system to Nyala shaft, from where it is hoisted to surface. Mining is conducted at depths of 1 500m to 2 300m. Ore mined is processed at the Harmony One plant, with gold recovered using the gold cyanide leaching process. Our Free State operations are in the endangered Vaal-Vet sandy grassland and the western Free State clay grassland ecosystem. No Red Data species have been identified although the commonly known threatened sungazer or giant girdled lizard and near-threatened lesser flamingo have been encountered in these habitats.

Row 6

(1.18.1) Mining project ID

Select from:

✓ Project 6

(1.18.2) Name

(1.18.3) Share (%)

100

(1.18.4) Country/Area

Select from:

✓ South Africa

(1.18.5) Latitude

-27.97332

(1.18.6) Longitude

26.87761

(1.18.7) Project stage

Select from:

Production

(1.18.8) Mining method

Select from:

Underground

(1.18.9) Raw material(s)

Select all that apply

✓ Gold

(1.18.10) Year extraction started/is planned to start

(1.18.11) Year of closure

2026

(1.18.12) Description of project

Masimong is a deep-level mine in the Free State, near Welkom, around 260km from Johannesburg. The operation is close to the end of its mine life. However, due to enhancements in the geological model during FY24, the life-of-mine was increased by 12 months when compared to the previous years' report. Operations are expected to continue well into 2026. Masimong is an example of the effectiveness of Harmony's business model. The Masimong complex comprises two shafts – one for operational use and the other for services such as ventilation, pumping and an escape route. Masimong exploits the Basal and B Reefs, using a conventional tabular narrow-reef stoping method. Mining depths are between of 1 650m to 2 010m. Ore mined is processed at the nearby Harmony One plant. Our Free State operations are in the endangered Vaal-Vet sandy grassland and the western Free State clay grassland ecosystem. No Red Data species have been identified although the commonly known threatened sungazer or giant girdled lizard and near-threatened lesser flamingo have been encountered in these habitats.

Row 7

(1.18.1) Mining project ID

Select from:

✓ Project 7

(1.18.2) Name

Joel Mine

(1.18.3) Share (%)

100

(1.18.4) Country/Area

Select from:

✓ South Africa

(1.18.5) Latitude

-28.27139

(1.18.6) Longitude

26.81611

(1.18.7) Project stage

Select from:

Production

(1.18.8) Mining method

Select from:

Underground

(1.18.9) Raw material(s)

Select all that apply

✓ Gold

(1.18.10) Year extraction started/is planned to start

1987

(1.18.11) Year of closure

2030

(1.18.12) Description of project

Joel is a twin-shaft mining operation in the Free State, some 290km south-west of Johannesburg, on the southern edge of the Witwatersrand Basin. A pre-developed scattered mining system is used, allowing for selective mining, leaving complex areas unmined, and takes into account the stability of footwall development. Mining is focused on the Beatrix reef up to a depth of 1 379m. Ore mined is processed at the Harmony One plant. Our Free State operations are in the endangered Vaal-Vet

sandy grassland and the western Free State clay grassland ecosystem. No Red Data species have been identified although the commonly known threatened sungazer or giant girdled lizard and near-threatened lesser flamingo have been encountered in these habitats.

Row 8

(1.18.1) Mining project ID

Select from:

✓ Project 8

(1.18.2) Name

Kalgold Mine

(1.18.3) Share (%)

100

(1.18.4) Country/Area

Select from:

✓ South Africa

(1.18.5) Latitude

-26.15527

(1.18.6) Longitude

25.24194

(1.18.7) Project stage

Select from:

✓ Production

(1.18.8) Mining method

Select from:

✓ Open-cut

(1.18.9) Raw material(s)

Select all that apply

✓ Gold

(1.18.10) Year extraction started/is planned to start

1999

(1.18.11) Year of closure

2038

(1.18.12) Description of project

Kalgold is a long-life, open-pit gold mine on the Kraaipan Greenstone Belt, 55km southwest of Mahikeng in North West province. Mining takes place from the A-zone pit, where activities are ramping up at the pillar between the pit and the Watertank pit. Mined ore is processed at the carbon-in-leach Kalgold plant. 200 indigenous trees have been planted at Kalgold in a partnership with local community in order to offset impact. In the North West province, our operations are in a critical biodiversity area with endangered, vulnerable ecosystems which include endemic vegetation types such as the critically endangered Brachystelma canum and endangered Aloe braamvanwykii. Both plants are endemic to a province that has experienced agricultural expansion in recent decades, resulting in habitat loss. According to the IUCN Red List of Threatened Species, the only critically endangered fauna is the white-backed vulture (Gyps africanus).

Row 9

(1.18.1) Mining project ID

Select from:

✓ Project 9

(1.18.2) Name

(1.18.3) Share (%)

50

(1.18.4) Country/Area

Select from:

✓ Papua New Guinea

(1.18.5) Latitude

-7.42638

(1.18.6) Longitude

146.66888

(1.18.7) Project stage

Select from:

Production

(1.18.8) Mining method

Select from:

✓ Open-cut

(1.18.9) Raw material(s)

Select all that apply

- ✓ Gold
- ✓ Silver

(1.18.10) Year extraction started/is planned to start

(1.18.11) Year of closure

2030

(1.18.12) Description of project

The Hidden Valley mine is an open-pit gold and silver operation in Morobe Province, Papua New Guinea, some 210km north-west of Port Moresby. The mine is located at elevations of 1,700 m to 2,800 m above sea level in steep mountainous and forested terrain with high annual rainfall. The major gold and silver deposits of Hidden Valley are in the Morobe Granodiorite of the Wau Graben. Crushed ore is conveyed from the pit via a 5.5km overland pipe conveyor and treated at the Hidden Valley processing plant using a two-stage crushing circuit followed by a semi-autogenous grinding mill, gravity, counter current decantation/Merril Crowe circuit for silver and a carbon-in-leach circuit for gold. With the largest remaining tract of primary forest in the Asia-Pacific area and the third largest block of intact tropical forest, PNG is home to more than 5% of the world's plant and animal species. Approximately two-thirds of the animals and plants are endemic. The Hidden Valley mine area and surrounding forest is known to provide habitat for protected fauna species including rare and vulnerable listed species. During 2025 biodiversity assessment, no IUCN threatened species, and no new-to-science or otherwise scientifically undescribed species, were recorded on the mining lease. However, seven conservation-listed fauna species and two flora species were recorded Hidden Valley operations remain within a confined footprint.

Row 10

(1.18.1) Mining project ID

Select from:

✓ Project 10

(1.18.2) Name

Moab Khotsong Mine

(1.18.3) Share (%)

100

(1.18.4) Country/Area

Select from:

✓ South Africa

(1.18.5) Latitude

-26.9792

(1.18.6) Longitude

26.7815

(1.18.7) Project stage

Select from:

✓ Production

(1.18.8) Mining method

Select from:

Underground

(1.18.9) Raw material(s)

Select all that apply

✓ Gold

(1.18.10) Year extraction started/is planned to start

2003

(1.18.11) Year of closure

2044

(1.18.12) Description of project

Moab Khotsong is a deep-level mine near the towns of Orkney and Klerksdorp, some 180km south-west of Johannesburg. Mining is based on a scattered mining method, together with an integrated backfill support system that incorporates bracket pillars. The geology at Moab Khotsong is structurally complex, with large fault-loss areas between the three mining areas: top mine, middle mine and lower mine. The mine exploits the Vaal Reef as its primary orebody. The economic reef

horizons are mined between 1 791m and 3 052m below surface. In the North West province, our operations are in a critical biodiversity area with endangered, vulnerable ecosystems which include endemic vegetation types such as the critically endangered Brachystelma canum and endangered Aloe braamvanwykii. Both plants are endemic to a province that has experienced agricultural expansion in recent decades, resulting in habitat loss. According to the IUCN Red List of Threatened Species, the only critically endangered fauna is the white-backed vulture (Gyps africanus). Also in North West, Moab Khotsong, beside the Vaal River, has differing biodiversity criteria, including sandy and rocky grasslands as well as riverine and valley bottom wetlands.

Row 12

(1.18.1) Mining project ID

Select from:

✓ Project 12

(1.18.2) Name

Mponeng Mine

(1.18.3) Share (%)

100

(1.18.4) Country/Area

Select from:

✓ South Africa

(1.18.5) Latitude

-26.43611

(1.18.6) Longitude

27.43056

(1.18.7) Project stage

Select from:

Production

(1.18.8) Mining method

Select from:

Underground

(1.18.9) Raw material(s)

Select all that apply

✓ Gold

(1.18.10) Year extraction started/is planned to start

1986

(1.18.11) Year of closure

2036

(1.18.12) Description of project

Mponeng is a deep level shaft located near the town of Carletonville. In the Gauteng province, our operations are near urban areas and not in critically endangered, endangered or vulnerable biodiversity areas but we encounter near-threatened ecosystems or species. We continue to minimise alien species' growth and infestation, aiming to eradicate these plants. Infested areas are mapped and divided into management units for prioritisation and appropriate planning.

Row 13

(1.18.1) Mining project ID

Select from:

✓ Project 13

(1.18.2) Name

(1.18.3) Share (%)

50

(1.18.4) Country/Area

Select from:

✓ Papua New Guinea

(1.18.5) Latitude

-6.8625

(1.18.6) Longitude

146.45333

(1.18.7) Project stage

Select from:

✓ Development

(1.18.8) Mining method

Select from:

Underground

(1.18.9) Raw material(s)

Select all that apply

- Copper
- ✓ Gold
- ✓ Silver

☑ Other non-ferrous metal, please specify :Molybdenum

(1.18.10) Year extraction started/is planned to start

2032

(1.18.11) Year of closure

2060

(1.18.12) Description of project

The Wafi-Golpu project is owned by the Wafi-Golpu joint venture, a 50:50 unincorporated joint venture between subsidiaries of Harmony and Newcrest Mining Limited (Australia). The Wafi-Golpu project is located approximately 65 km southwest of Lae, in Morobe Province. The project is an underground mine with the proposed mining method being block caving. In December 2020, the Conservation and Environment Protection Agency concluded its assessment of the Wafi-Golpu project's environment permit application and granted an environment permit approving the project including deep-sea tailings placement as the project's tailings management method. The Wafi-Golpu joint venture continued negotiations with the Papua New Guinean government to secure the special mining lease and mine development contract project. To date, no mining has occurred in the project area.

Row 14

(1.18.1) Mining project ID

Select from:

✓ Project 14

(1.18.2) Name

Eva Copper Mine

(1.18.3) Share (%)

100

(1.18.4) Country/Area

Select	from:

Australia

(1.18.5) Latitude

-20.1475

(1.18.6) Longitude

140.14417

(1.18.7) Project stage

Select from:

✓ Development

(1.18.8) Mining method

Select from:

✓ Open-cut

(1.18.9) Raw material(s)

Select all that apply

- ✓ Gold
- ✓ Silver

(1.18.10) Year extraction started/is planned to start

2026

(1.18.11) Year of closure

2042

(1.18.12) Description of project

The Eva Copper Mine project is an iron oxide, copper and gold resource placed to become the largest copper mine in North West Queensland, Australia. It is located on the traditional lands of the Kalkadoon People, 75 kilometres north of Cloncurry and 95 kilometres north-east of Mount Isa. The project has the potential to be a long-life conventional open pit mine with a copper concentrator producing a high quality copper concentrate.

[Add row]

(1.24) Has your organization mapped its value chain?

(1.24.1) Value chain mapped

Select from:

✓ Yes, we have mapped or are currently in the process of mapping our value chain

(1.24.2) Value chain stages covered in mapping

Select all that apply

✓ Upstream value chain

✓ Downstream value chain

(1.24.3) Highest supplier tier mapped

Select from:

✓ Tier 3 suppliers

(1.24.4) Highest supplier tier known but not mapped

Select from:

✓ All supplier tiers known have been mapped

(1.24.7) Description of mapping process and coverage

Harmony Gold Mine has mapped its value chain in South Africa and Papua New Guinea, with Australia still in the project stage, and publicly discloses the results of this mapping. Harmony Gold highlights various aspects of our value chain in our Integrated Annual Report, emphasizing the importance of safety, cost management and productivity improvements. This is part of our operational excellence strategy, which aims to maximize production efficiency and maintain strict cost controls.

Additionally, our ESG Report details our environmental and social governance (ESG) practices, which are integral to our value chain management. We focus on responsible stewardship, including decarbonization efforts, community engagement and social uplift initiatives. Harmony uses a three-tiers stakeholder engagement model, which enable us stay connected and attuned to and have broad-based engagements with all stakeholders including government, landowners, communities, and first nations who form part of our key stakeholder groupings. This tripartite approach applies a three-tiered stakeholders engagement model: • Tier 1 – includes engagements with the host government that focus on licensing and regulatory matters, and include alignment with and contribution to the national/state, provincial and local government developmental agenda to ensure that our social performance contributes to government's imperatives. • Tier 2 – constitutes engagements with landowners, local communities, first nations and traditional authorities mainly focused on socio-economic development of the host areas. • Tier 3 – includes broad-based engagements with all other stakeholders affected by our mining and production activities, including NGOs and pressure groups, to discuss and manage expectations and concerns. These engagements are facilitated through established structures and forums. The model is steered by a cross-functional stakeholder relations committee that provides oversight and guidance on key stakeholder relations matters. The following tools and methods are used: supplier forums and dialogues, local preferential procurement, community engagement and support of local businesses. Our engagement strategy is guided by our Stakeholder relations, while the Board is ultimately accountable.

[Fixed row]

(1.24.1) Have you mapped where in your direct operations or elsewhere in your value chain plastics are produced, commercialized, used, and/or disposed of?

(1.24.1.1) Plastics mapping

Select from:

✓ Yes, we have mapped or are currently in the process of mapping plastics in our value chain

(1.24.1.2) Value chain stages covered in mapping

Select all that apply

- ✓ Upstream value chain
- ✓ End-of-life management

(1.24.1.4) End-of-life management pathways mapped

Select all that apply

- Recycling
- ✓ Landfill

[Fixed row]

- C2. Identification, assessment, and management of dependencies, impacts, risks, and opportunities
- (2.1) How does your organization define short-, medium-, and long-term time horizons in relation to the identification, assessment, and management of your environmental dependencies, impacts, risks, and opportunities?

Short-term

(2.1.1) From (years)

0

(2.1.3) To (years)

10

(2.1.4) How this time horizon is linked to strategic and/or financial planning

The time horizons for the identification, assessment and management of dependencies, impacts, risks and opportunities link with strategic and financial planning horizons as follows: Short term (10 years): Strategic Planning: Immediate actions to address current risks, improve safety, and ensure operational continuity. Financial Planning: Managing immediate costs, securing short-term funding, and ensuring liquidity to meet operational needs

Medium-term

(2.1.1) From (years)

10

(2.1.3) To (years)

20

(2.1.4) How this time horizon is linked to strategic and/or financial planning

The time horizons for the identification, assessment and management of dependencies, impacts, risks and opportunities link with strategic and financial planning horizons as follows: Medium-term (10 to 20 years): Strategic Planning: Planning and implementing projects that enhance operational efficiency, sustainability initiatives, and compliance with emerging regulations. Financial Planning: Allocating capital for medium-term projects, budgeting for upgrades and expansions, and balancing between short-term expenditures and long-term investments.

Long-term

(2.1.1) From (years)

20

(2.1.2) Is your long-term time horizon open ended?

Select from:

Yes

(2.1.4) How this time horizon is linked to strategic and/or financial planning

The time horizons for the identification, assessment and management of dependencies, impacts, risks and opportunities link with strategic and financial planning horizons as follows: Long-term (more than four years): Strategic Planning: Setting strategic goals such as achieving net-zero emissions by 2045, ensuring the sustainability of mining operations, major infrastructure developments, and mine closure and post-closure planning. Financial Planning: Investing in long-term projects, managing debt, planning for future revenue streams, and ensuring the financial stability to support strategic objectives [Fixed row]

(2.2) Does your organization have a process for identifying, assessing, and managing environmental dependencies and/or impacts?

	Dependencies and/or impacts evaluated in this process	Biodiversity impacts evaluated before the mining project development stage
Select from:	Select from:	Select from:

Process in place	Dependencies and/or impacts evaluated in this process	Biodiversity impacts evaluated before the mining project development stage
✓ Yes	☑ Both dependencies and impacts	✓ Yes, in all cases

[Fixed row]

(2.2.1) Does your organization have a process for identifying, assessing, and managing environmental risks and/or opportunities?

Process in place	Risks and/or opportunities evaluated in this process	Is this process informed by the dependencies and/or impacts process?
Select from: ✓ Yes	Select from: ✓ Both risks and opportunities	Select from: ✓ Yes

[Fixed row]

(2.2.2) Provide details of your organization's process for identifying, assessing, and managing environmental dependencies, impacts, risks, and/or opportunities.

Row 1

(2.2.2.1) Environmental issue

Select all that apply

✓ Climate change

Water

(2.2.2.2) Indicate which of dependencies, impacts, risks, and opportunities are covered by the process for this environmental issue

Select all that apply

- ✓ Dependencies
- ✓ Impacts
- Risks
- Opportunities

(2.2.2.3) Value chain stages covered

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain
- ✓ Downstream value chain
- ☑ End of life management

(2.2.2.4) Coverage

Select from:

✓ Full

(2.2.2.5) Supplier tiers covered

Select all that apply

☑ Tier 1 suppliers

(2.2.2.7) Type of assessment

Select from:

✓ Qualitative and quantitative

(2.2.2.8) Frequency of assessment

Select from:

Annually

(2.2.2.9) Time horizons covered

Select all that apply

- ✓ Short-term
- ✓ Medium-term
- ✓ Long-term

(2.2.2.10) Integration of risk management process

Select from:

✓ Integrated into multi-disciplinary organization-wide risk management process

(2.2.2.11) Location-specificity used

Select all that apply

- ✓ Site-specific
- ✓ Local
- ✓ Sub-national
- National

(2.2.2.12) Tools and methods used

Enterprise Risk Management

☑ Enterprise Risk Management

International methodologies and standards

- ☑ Environmental Impact Assessment
- ✓ IPCC Climate Change Projections
- ☑ ISO 14001 Environmental Management Standard
- ✓ Other international methodologies and standards, please specify: IFC Performance Standards

Databases

- ✓ FAO/AQUASTAT
- ✓ Nation-specific databases, tools, or standards

Other

- ✓ Desk-based research
- ✓ External consultants
- ✓ Materiality assessment
- ✓ Scenario analysis

(2.2.2.13) Risk types and criteria considered

Acute physical

- Drought
- ✓ Flood (coastal, fluvial, pluvial, ground water)
- ☑ Heavy precipitation (rain, hail, snow/ice)
- ☑ Rupture of tailings dams and toxic spills
- ✓ Storm (including blizzards, dust, and sandstorms)

Chronic physical

- ✓ Water stress
- Declining water quality
- ▼ Temperature variability
- ✓ Precipitation or hydrological variability
- ✓ Increased severity of extreme weather events

Policy

- ✓ Increased pricing of water
- ☑ Mandatory water efficiency, conservation, recycling, or process standards
- ☑ Regulation of discharge quality/volumes
- ☑ Statutory water withdrawal limits/changes to water allocation

✓ Water availability at a basin/catchment level

Market

- ☑ Availability and/or increased cost of raw materials
- ✓ Other market, please specify: Availability and/or increased cost of recycled or renewable content.

Reputation

- ✓ Impact on human health
- ✓ Increased partner and stakeholder concern and partner and stakeholder negative feedback

Technology

- ✓ Dependency on water-intensive energy sources
- ✓ Data access/availability or monitoring systems
- ✓ Transition to water efficient and low water intensity technologies and products

Liability

- ☑ Exposure to litigation
- ✓ Non-compliance with regulations
- ☑ Other liability, please specify :Closure liabilities

(2.2.2.14) Partners and stakeholders considered

Select all that apply

✓ NGOs
✓ Regulators

✓ Customers
✓ Local communities

✓ Employees
✓ Indigenous peoples

✓ Investors
✓ Water utilities at a local level

✓ Suppliers ✓ Other water users at the basin/catchment level

(2.2.2.15) Has this process changed since the previous reporting year?

Select from:

✓ No

(2.2.2.16) Further details of process

1.Identifying and assessing dependencies, impacts, risks, and opportunities Harmony applies its Enterprise Risk Management (ERM) framework, aligned with ISO 31000:2018, which integrates climate, water, and biodiversity risks across operations. The ERM framework is integrated into the multi-disciplinary organization- wide risk management process and operational risk registers. In addition, Harmony uses: •Environmental Aspect and Impact Identification to screen all operational sites and activities across the value chain to determine dependencies (e.g. water availability, biodiversity reliance), impacts, and associated risks/opportunities. •

Environmental Impact Assessments, applied at project level. • Climate Change Scenario Analysis (HAR-CLAIR24, ESG24), to consider acute and chronic physical risks (e.g. drought, flooding, temperature variability), transition risks (e.g. policy, carbon tax, carbon budgets), market risks, and reputation risks. It incorporates IPCC projections, SSP/RCP data, and World Gold Council inputs. • Water Resource Management to manage water risks, aligns with legal/statutory requirements on water allocation, discharge, and efficiency. • Site-level assessments to identify biodiversity and mine closure and rehabilitation risks. 2. Proportion of operations covered • The process applies to all wholly owned and managed operations, across the mining lifecycle (exploration, development, operations, closure). Water and biodiversity standards apply at all asset and basin levels, covering operational locations and surrounding communities. 3. Methodologies and data Internal methods: Harmony's ESG framework sets standardised methods across climate, water, and biodiversity. • External tools/data: o IPCC AR6 sources • data (Shared Socioeconomic Pathways (SSPs), Representative Concentration Pathways (RCPs)), World Gold Council (climate/market). o National regulatory databases for water allocation, discharge permits, and carbon tax (South Africa, PNG, Australia). o Independent audits and EIAs at asset level. o External consultants (Deloitte Impact Pathways) for impact quantification frameworks. 4. Integration into ERM • Risks are integrated into the Group Strategic Risk Register and reviewed quarterly by the Audit & Risk Committee, Social & Ethics Committee, and Investment Committee. Climate change is classified as a highimpact, material likelihood, cross-cutting strategic risk. • Water and biodiversity dependencies are tracked through EMS reporting and escalated into ERM when material. 5. Determining substantive financial/strategic effect • Harmony applies scenario analysis to determine the likelihood and magnitude of effects under different climate futures (RCP8.5, RCP6.0, RCP2.6). • Methodology: Risks are assessed qualitatively and quantitatively using risk models, stress tests, and financial modelling of exposures (e.g., production and revenue losses, carbon tax pass-through, water scarcity cost impacts, health and safety losses). Criteria: High impact and material likelihood classification is applied when risks can disrupt production, elevate costs, or impact reputation and social licence. Monitoring: Risks and impacts are monitored via EMS audits (internal & ISO 14001), incident reporting with risk matrix scoring, and annual management reviews. The FY25 Impact Pathways mapping now provides a framework for quantifying impacts in monetary and measurable terms (carbon cost to society, job creation, biodiversity gains).

(2.2.7) Are the interconnections between environmental dependencies, impacts, risks and/or opportunities assessed?

(2.2.7.1) Interconnections between environmental dependencies, impacts, risks and/or opportunities assessed

Select from:

[Add row]

✓ Yes

(2.2.7.2) Description of how interconnections are assessed

Holistic Environmental Assessment Harmony applies a Sustainable Development Framework that integrates environmental dependencies, impacts, risks, and opportunities into a single process. This framework is operationalised through our Group Environmental Standards, policies and Enterprise Risk Management (ERM)

system, which is aligned with ISO 31000:2018 and ISO 14001:2015. These standards require all operational sites to identify environmental aspects, assess their impacts, and evaluate and control risks in an integrated manner across climate change, water, biodiversity, and broader environmental issues. Integration into Company-wide Risk Assessment Environmental dependencies and impacts are screened at site and corporate level using the Environmental Aspect and Impact Identification Standard and are incorporated into our ERM and operational risk registers. This ensures that interconnections are assessed alongside operational, financial, and strategic risks. The process is reviewed quarterly by the Audit and Risk Committee, Social and Ethics Committee, and Investment Committee, ensuring that interrelated risks and opportunities (e.g., climate, water, and biodiversity) are assessed together rather than in isolation. Methodology and Interconnections Our process combines: • Scenario analysis to link climate change to water availability, energy security, and social licence. •Environmental Impact Assessments (EIAs) and water balance assessments (WBA) to evaluate dependencies and risks across catchments and communities. • Impact Pathways mapping (2025) to show how climate, water, biodiversity, and social impacts converge in measurable outcomes (e.g., carbon cost to society, water stress and labour productivity, rehabilitation and biodiversity gains). Assessing Synergies and Trade-offs Interconnections are considered through the identification of synergies (e.g., renewable energy investments reduce both emissions and water intensity) and trade-offs (e.g., mine dewatering reduces water risks to operations but can affect surrounding ecosystems and communities). Dependencies and impacts are assessed holistically to capture these dynamics, allowing Harmony to balance operational needs with environmental stewardship. Examples • Climate change scenario analysis links acute physical risks (drought, flooding) with water scarcity, health and safety risks, and community resilience. The Impact Pathways work identifies how emission reductions contribute simultaneously to lower carbon liabilities, improved air quality, and reputational benefits. Challenges Harmony recognizes challenges in fully integrating all interconnections, particularly where data availability is limited (e.g., biodiversity dependencies at regional ecosystem level) or where trade-offs between environmental and operational outcomes require further quantification. These gaps are being addressed through the pathways framework, improved data systems, and alignment with IFRS S2 disclosure requirement [Fixed row]

(2.3) Have you identified priority locations across your value chain?

(2.3.1) Identification of priority locations

Select from:

✓ Yes, we have identified priority locations

(2.3.2) Value chain stages where priority locations have been identified

Select all that apply

✓ Direct operations

(2.3.3) Types of priority locations identified

Sensitive locations

- ✓ Areas important for biodiversity
- ✓ Areas of high ecosystem integrity

✓ Areas of limited water availability, flooding, and/or poor quality of water

Locations with substantive dependencies, impacts, risks, and/or opportunities

- ✓ Locations with substantive dependencies, impacts, risks, and/or opportunities relating to forests
- ✓ Locations with substantive dependencies, impacts, risks, and/or opportunities relating to water
- ✓ Locations with substantive dependencies, impacts, risks, and/or opportunities relating to biodiversity

(2.3.4) Description of process to identify priority locations

Harmony identifies and assesses priority locations for environmental risks and opportunities related to its direct operations through its Enterprise Risk Management (ERM) framework, the approved risk appetite and tolerance framework and Group Environmental Standards Risks are assessed using a risk matrix that evaluates likelihood and consequence, in line with ISO 31000:2018 and our ISO 14001-aligned Environmental Management System. At the operational level, dependencies and impacts are identified through the Environmental Aspect and Impact Identification Standard, supported by Environmental Impact Assessments (EIAs) and water balance studies. Water-related risks are specifically managed under — Water Resource Management, which requires assessment of water availability, water quality, and flooding risks across the catchment. Climate-related risks, including acute and chronic water risks, are addressed under — Climate Change Management and informed by scenario analysis. with ongoing work planned to further enhance understanding through expanded climate scenario assessments. Harmony determines whether dependencies, impacts, risks, or opportunities at a location are substantive through its ERM process, which classifies risks based on both their likelihood of occurrence and their potential impact on operations, financial performance, communities, and ecosystems. A risk or opportunity is deemed substantive where it has the potential to disrupt production, materially affect revenues or costs, compromise compliance with regulatory requirements, or significantly influence stakeholder relationships and social license to operate. A location is considered sensitive where assessments show significant dependency on local water resources, material water-related risks such as scarcity, flooding, or quality issues, or where regulatory requirements on water allocation or discharge are stringent. These assessments are undertaken at the site and catchment level and are aggregated for corporate reporting and integration into the Gr

(2.3.5) Will you be disclosing a list/spatial map of priority locations?

Select from:

✓ Yes, we will be disclosing the list/geospatial map of priority locations

(2.3.6) Provide a list and/or spatial map of priority locations

CDP Water Question 2.3.5 List of Water Risk.xlsx [Fixed row]

(2.4) How does your organization define substantive effects on your organization?

Risks

(2.4.1) Type of definition

Select all that apply

Qualitative

Quantitative

(2.4.2) Indicator used to define substantive effect

Select from:

✓ Revenue

(2.4.3) Change to indicator

Select from:

✓ % decrease

(2.4.4) % change to indicator

Select from:

☑ 1-10

(2.4.6) Metrics considered in definition

Select all that apply

☑ Likelihood of effect occurring

(2.4.7) Application of definition

Factors Considered for Defining a Substantive Effect 1. Revenue Impact: Risks are deemed substantive if they could result in a 10% or greater decrease in revenue, reflecting a material threat to Harmony's financial sustainability. 2. Water Management and Security: Water scarcity, quality, flooding, extreme weather events or regulatory changes are considered substantive where they threaten the security of water supply in regions such as South Africa and Papua New Guinea, with potential to disrupt production or increase operational costs. 3. Materiality Benchmark: A 0.75% of consolidated revenue threshold is applied as a benchmark for determining whether an environmental risk or opportunity is financially material. 4. Operational Performance: Risks leading to a 5% or greater negative deviation

from planned output are substantive, particularly where linked to water and climate dependencies. 5. Scenario Analysis: Climate and water-related risks are further tested through scenario analysis and sensitivity testing, quantifying impacts under different conditions. Application of Thresholds and Metrics • Matrix Approach: Harmony applies a risk matrix combining likelihood and consequence to assess environmental risks. The financial (10%/0.75%), operational (5%), and water security thresholds act as triggers — if any are met, the risk is classified as substantive. • Likelihood: Risks are rated on a probability scale (low, medium, high) within the ERM framework. For CDP reporting, "material likelihood" refers to risks assessed as medium to high probability of occurring. • Frequency: Substantive risks are those expected to occur at least once within the planning horizon (short-, medium-, or long-term), rather than remote or rare events. • Time Horizons: Harmony applies short-term (0–3 years), medium-term (3–10 years), and long-term (10+ years) horizons. Climate-related risks are tested across all three using scenario analysis. • Review Cycle: All thresholds and metrics are reviewed quarterly through the Audit & Risk Committee and Board processes, and updated annually as part of the Group Strategic Risk Register review.

Opportunities

(2.4.1) Type of definition

Select all that apply

- Qualitative
- Quantitative

(2.4.2) Indicator used to define substantive effect

Select from:

Revenue

(2.4.3) Change to indicator

Select from:

✓ % increase

(2.4.4) % change to indicator

Select from:

☑ 1-10

(2.4.6) Metrics considered in definition

Select all that apply

∠ Likelihood of effect occurring

(2.4.7) Application of definition

Harmony considers environmental opportunities substantive when they deliver material benefits to financial performance, regulatory compliance, communities, stakeholder trust, or long-term sustainability. Thresholds Applied: • Financial/Revenue Impact: Opportunities are deemed substantive if they contribute to long-term financial stability or risk avoidance equivalent to ≥10% revenue impact or meet the 0.75% of consolidated revenue materiality benchmark. • Operational Performance: Opportunities that can improve efficiency or avoid performance losses of ≥5% against planned output are substantive. • Water Security and Community Wellbeing: Opportunities that strengthen local water availability, improve water quality, or enhance biodiversity and rehabilitation are substantive where they directly Scenario Analysis: Scenario and sensitivity testing is used to assess how opportunities improve Harmony's benefit both operations and host communities. • social licence and resilience under different climate and regulatory conditions. Application Across Metrics: • Matrix Approach: Substantive opportunities are identified where any one of the thresholds is met (financial, operational, water/community, or scenario-based). These metrics are applied in combination with Harmony's ERM risk matrix, which evaluates likelihood and consequence. • Likelihood: Opportunities are classified as substantive where there is a medium to high probability of occurrence, as determined by the ERM framework. • Frequency: Substantive opportunities are those expected to recur or deliver benefits within at least one planning horizon, not only one-off impacts. • Time Horizons: Harmony applies three-time frames: short-term (0–3 years), medium-term (3–10 years), and long-term (10+ years), with environmental opportunities assessed across all horizons. Review of metrics, thresholds: • All thresholds and metrics are reviewed quarterly through the Audit & Risk Committee and Board processes and updated annually as part of the Group Strategic Risk (and Opportunity) Register review. [Add row]

(2.5) Does your organization identify and classify potential water pollutants associated with its activities that could have a detrimental impact on water ecosystems or human health?

(2.5.1) Identification and classification of potential water pollutants

Select from:

✓ Yes, we identify and classify our potential water pollutants

(2.5.2) How potential water pollutants are identified and classified

Policy and Process to Identify and Classify Water Pollutants Harmony identifies and classifies potential water pollutants through the requirements set out in its Group Environmental Standards (– Water Resource Management, – Environmental Aspect and Impact Identification, and – EMS Reporting and Review). All operations conduct regular water quality monitoring to assess the potential impact of mining activities on surrounding water bodies, ecosystems, and communities. Harmony applies a zero non compliant water discharge policy wherever possible. In cases where zero discharge cannot be achieved, or where operations are located in water-positive areas, water treatment plants are installed to ensure that discharges are treated to meet regulatory and environmental standards. Classification of Pollutants

Potential water pollutants are classified based on parameters commonly associated with mining-related impacts. Monitoring focuses on: • Acidity and alkalinity (pH, alkalinity), • Sulphate concentrations, • Electrical conductivity and total dissolved solids (TDS), and • Heavy metal concentrations (e.g., iron, manganese). Standards and Methodologies Applied In South Africa, Tailings Storage Facilities (TSFs) and associated discharges are managed in line with the SANS 10286 standard and the DMRE Code of Practice. In Papua New Guinea and Australia, Harmony applies equivalent national legislation and permitting requirements for TSF operation, water discharge, and treatment in line with ANCOLD guidelines. Metrics and Indicators Used Key indicators include pH, alkalinity, sulphate, conductivity, TDS, and heavy metals, which are monitored to assess compliance with permit limits and water quality objectives, and to evaluate potential risks to ecosystems and human health. These results inform management actions under the Environmental Management System and are reviewed at site and group level as part of Harmony's risk management process.

[Fixed row]

(2.5.1) Describe how your organization minimizes the adverse impacts of potential water pollutants on water ecosystems or human health associated with your activities.

Row 1

(2.5.1.1) Water pollutant category

Select from:

✓ Inorganic pollutants

(2.5.1.2) Description of water pollutant and potential impacts

Mine impacted water generally contains sulphates and a low pH, low alkalinity. Sulphates, nitrates and cyanide are considered as inorganic pollutants. Potentially impacted ecosystems or populations: Water containing these pollutants can result in health concerns, and are relevant to both our direct operations and the surrounding communities.

(2.5.1.3) Value chain stage

Select all that apply

- ✓ Direct operations
- ✓ Downstream value chain

(2.5.1.4) Actions and procedures to minimize adverse impacts

Select all that apply

- ✓ Water recycling
- ✓ Provision of best practice instructions on product use
- ☑ Implementation of integrated solid waste management systems
- ✓ Industrial and chemical accidents prevention, preparedness, and response
- ☑ Discharge treatment using sector-specific processes to ensure compliance with regulatory requirements
- ☑ Assessment of critical infrastructure and storage condition (leakages, spillages, pipe erosion etc.) and their resilience

(2.5.1.5) Please explain

Managing the Risks of Potential Water Impacts Harmony manages the potential impacts of water pollutants through a structured set of procedures embedded in its Group Environmental Standards (– Water Resource Management and – Aspect and Impact Identification). All Tailings Storage Facilities (TSFs) and associated water infrastructure are regularly assessed to prevent leakages and ensure structural integrity. Water quality is monitored frequently at all operations to confirm compliance with regulatory requirements and safe limits established under relevant water use authorisations. Where operations are located in water-positive areas or where zero-discharge is not feasible, water treatment plants are installed to ensure that discharges remain within safe regulatory thresholds. These measures are designed to minimise risks to surrounding water bodies, ecosystems, and human health. Evaluation of Success The effectiveness of these procedures is measured against a clear benchmark: no water discharges outside of the regulatory limits set by the applicable authorisations and permits. Compliance monitoring results are reviewed at site and corporate level through Harmony's Environmental Management System (EMS) and reported into the Group's risk management processes.

[Add row]

(2.6) By river basin, what number of active and inactive tailings dams are within your control?

Row 1

(2.6.1) Country/area & River basin

Papua New Guinea

☑ Other, please specify: Watut River Catchment

(2.6.2) Number of tailings dams in operation

1

(2.6.3) Number of inactive tailings dams

(2.6.4) Comment

Deep-sea tailings facility placement is the preferred tailing solution (rather than a terrestrial TSF) for the Wafi-Golpu project to ensure minimum impact to the environment and communities. Hidden Valley uses a TSF designed and operated in accordance with the Australian National Committee on Large Dams (ANCOLD). The facility comprises two cross-valley embankments (main and saddle dams) constructed using the downstream build methodology. It is the first large facility of this kind to be operated successfully in Papua New Guinea.

Row 2

(2.6.1) Country/area & River basin

South Africa

Orange

(2.6.2) Number of tailings dams in operation

28

(2.6.3) Number of inactive tailings dams

55

(2.6.4) Comment

The number of tailings facilities in South Africa increased when Harmony's Mponeng & Mine Waste Solutions operations were acquired. All operational facilities use upstream deposition incorporating day wall and basin deposition or upstream cyclone deposition.

[Add row]

(2.6.1) Do you evaluate and classify the tailings dams under your control according to the consequences of their failure to human health and ecosystems?

(2.6.1.1) Evaluation of the consequences of tailings dam failure

Select from:

✓ Yes, we evaluate the consequences of tailings dam failure

(2.6.1.2) Evaluation/Classification guideline(s)

Select all that apply

- ✓ Australian National Committee on Large Dams (ANCOLD)
- ✓ South Africa (SANS) 10286
- ☑ Global Industry Standard on Tailings Management (ICMM)

(2.6.1.3) Tailings dams have been classified as 'hazardous' or 'highly hazardous'

Select from:

✓ Yes, tailings dams have been classified as 'hazardous' or 'highly hazardous' (or equivalent)

(2.6.1.4) Please explain

Harmony's evaluation process follows regulatory guidelines to ensure compliance and safeguard human health and the environment. In South Africa, all TSFs are designed, operated and audited in line with the SANS 10286 standard and the DMRE Code of Practice, while international operations apply ANCOLD guidelines and relevant host country regulations. Harmony's alignment with the GISTM standard, including selected elements, is subject to ongoing assessment, considering the practicality and economic feasibility of retrofitting historical TSFs to achieve full compliance. This approach supports ongoing efforts to strengthen alignment with international best practice. Potential consequences of TSF failures, including spills and structural breaks, are assessed in terms of their impact on human health, the environment and surrounding communities. Active TSFs are classified according to their risk profile, reflecting the potential presence of organic or inorganic elements with adverse effects. ANCOLD uses consequence of failure classification based on fatalities and impacts. SANS 10286 uses quantitative criteria based on the number of affected people and property value in the Zone of Influence. TSFs undergo daily monitoring, monthly plant-level reviews and quarterly stakeholder meetings stakeholders to assess compliance and risk management. Independent reviews and audits are conducted annually per regulatory and company requirements.

[Fixed row]

(2.6.2) Provide details for all dams classified as 'hazardous' or 'highly hazardous'.

Row 1

(2.6.2.1) Tailings dam name/identifier

Avgold Limited: Target 1 and 2

(2.6.2.2) Country/Area & River basin

South Africa

Orange

(2.6.2.3) Latitude

-26.626147

(2.6.2.4) Longitude

27.785108

(2.6.2.5) Hazard classification

Hazardous

(2.6.2.6) Guidelines used

Select all that apply

✓ South Africa SANS 10286

(2.6.2.7) Tailings dam's activity

Select from:

Active

(2.6.2.8) Current tailings storage impoundment volume (Mm3)

45.03

(2.6.2.9) Planned tailings storage impoundment volume in 5 years (Mm3)

50.35

(2.6.2.10) Please explain

Harmony recognises the adverse impacts which tailings storage facilities (TSF) could pose on their surroundings and the knock-on impact that could have on its host communities. Harmony thus establishes a Zone of Influence boundary around all of their TSFs and manages its TSFs in line with the SANS 10286 standard as well as their environmental codes. Target Mine is situated in South Africa and has two compartments of their tailings storage facility (i.e. Target 1 and Target 2). Together, these two compartment TSFs held 45.03 million m3 of tailings in FY2024. Target 2 compartment is now in care and maintenance however the Target 1 compartment is active, thus active has been selected for this tailings dam. The TSFs are wholly owned and controlled by Harmony. This TSF is associated with the Target 1 mine.

Row 2

(2.6.2.1) Tailings dam name/identifier

Harmony Gold Mine (Harmony One Plant): Free State South 2 (FSS2)

(2.6.2.2) Country/Area & River basin

South Africa

Orange

(2.6.2.3) Latitude

-26.794074

(2.6.2.4) Longitude

28.02117

(2.6.2.5) Hazard classification

Hazardous

(2.6.2.6) Guidelines used

Select all that apply

✓ South Africa SANS 10286

(2.6.2.7) Tailings dam's activity

Select from:

Active

(2.6.2.8) Current tailings storage impoundment volume (Mm3)

39.5

(2.6.2.9) Planned tailings storage impoundment volume in 5 years (Mm3)

41.28

(2.6.2.10) Please explain

Harmony recognises the adverse impacts which tailings storage facilities (TSF) could pose on their surroundings and the knock-on impact that could have on its host communities. Harmony thus establishes a Zone of Influence boundary around all of its TSFs and manages their TSFs in line with the SANS 10286 standard, as well as their environmental codes. Harmony One's FSS 2 is a tailings dam which is situated in the Free State in South Africa. This TSF in FY2024 held 39.5 million m3 of tailings from all Harmony's Free State surface operations. The TSF is wholly owned and controlled by Harmony. This TSF is associated with the Harmony One plant which processes ore from Tshepong North & South, Masimong and Joel.

Row 3

(2.6.2.1) Tailings dam name/identifier

Harmony Gold Mine (Central Plant): Dam 23

(2.6.2.2) Country/Area & River basin

South Africa

Orange

(2.6.2.3) Latitude

-26.892874

(2.6.2.4) Longitude

28.06944

(2.6.2.5) Hazard classification

Hazardous

(2.6.2.6) Guidelines used

Select all that apply

✓ South Africa SANS 10286

(2.6.2.7) Tailings dam's activity

Select from:

Active

(2.6.2.8) Current tailings storage impoundment volume (Mm3)

46.8

(2.6.2.9) Planned tailings storage impoundment volume in 5 years (Mm3)

62.01

(2.6.2.10) Please explain

Harmony recognises the adverse impacts which tailings storage facilities (TSF) could pose on their surroundings and the knock-on impact that could have on its host communities. Harmony thus establishes a Zone of Influence boundary around all of its TSFs and manages their TSFs in line with the SANS 10286 standard as well

as their environmental codes. The Central Plant's tailings dams includes Dam 23, which is situated in South Africa and in FY2024 held 46.8 million m3 of tailings. The TSF is wholly owned and controlled by Harmony. This TSF is associated with the Central Plant.

Row 4

(2.6.2.1) Tailings dam name/identifier

Harmony Gold Mine (Central Plant): Brand D

(2.6.2.2) Country/Area & River basin

South Africa

Orange

(2.6.2.3) Latitude

-26.852812

(2.6.2.4) Longitude

28.005319

(2.6.2.5) Hazard classification

Hazardous

(2.6.2.6) Guidelines used

Select all that apply

✓ South Africa SANS 10286

(2.6.2.7) Tailings dam's activity

Select from:

Active

(2.6.2.8) Current tailings storage impoundment volume (Mm3)

52.06

(2.6.2.9) Planned tailings storage impoundment volume in 5 years (Mm3)

70.71

(2.6.2.10) Please explain

Harmony recognises the adverse impacts which tailings storage facilities (TSF) could pose on their surroundings and the knock-on impact that could have on its host communities. Harmony thus establishes a Zone of Influence boundary around all of its TSFs and manages their TSFs in line with the SANS 10286 standard, as well as their environmental codes. The Central Plant's tailings dams includes Brand D, which is situated in South Africa and held 52.06 million m3 of tailings in FY2024. The TSF is wholly owned and controlled by Harmony. This TSF is associated with the Central Plant.

Row 5

(2.6.2.1) Tailings dam name/identifier

Harmony Gold Mine (Doornkop Plant): Doornkop

(2.6.2.2) Country/Area & River basin

South Africa

Orange

(2.6.2.3) Latitude

-27.784882

(2.6.2.4) Longitude

26.205289

(2.6.2.5) Hazard classification

(2.6.2.6) Guidelines used

Select all that apply

✓ South Africa SANS 10286

(2.6.2.7) Tailings dam's activity

Select from:

Active

(2.6.2.8) Current tailings storage impoundment volume (Mm3)

51.58

(2.6.2.9) Planned tailings storage impoundment volume in 5 years (Mm3)

62.63

(2.6.2.10) Please explain

Harmony recognises the adverse impacts which tailings storage facilities (TSF) could pose on their surroundings and the knock-on impact that could have on its host communities. Harmony thus establishes a Zone of Influence boundary around all of its TSFs and manages their TSFs in line with the SANS 10286 standard as well as their environmental codes. The Doornkop Plant in Gautenghas a TSF which in FY2024 held 51.58 million m3 of tailings. The TSF is wholly owned and controlled by Harmony. This TSF is associated with the Doornkop mine.

Row 6

(2.6.2.1) Tailings dam name/identifier

Harmony Gold Mine (Kusasalethu Plant): Kusasalethu Upper and Lower

(2.6.2.2) Country/Area & River basin

Orange

(2.6.2.3) Latitude

-27.353305

(2.6.2.4) Longitude

26.465038

(2.6.2.5) Hazard classification

Hazardous

(2.6.2.6) Guidelines used

Select all that apply

☑ South Africa SANS 10286

(2.6.2.7) Tailings dam's activity

Select from:

Active

(2.6.2.8) Current tailings storage impoundment volume (Mm3)

37.26

(2.6.2.9) Planned tailings storage impoundment volume in 5 years (Mm3)

38.49

(2.6.2.10) Please explain

Harmony recognises the adverse impacts which tailings storage facilities (TSF) could pose on their surroundings and the knock-on impact that could have on its host communities. Harmony thus establishes a Zone of Influence boundary around all of its TSFs and manages their TSFs in line with the SANS 10286 standard, as well as their environmental codes. The Kusasalethu Plant in South Africa has an Upper and Lower TSF. Together these two sub-divided TSFs held 37.26 million m3 of tailings in FY2024. The TSF is wholly owned and controlled by Harmony. This TSF is associated with Kusasalethu.

Row 7

(2.6.2.1) Tailings dam name/identifier

Harmony Gold Mine (Noligwa Gold Plant): Mispah 1 and 2

(2.6.2.2) Country/Area & River basin

South Africa

Orange

(2.6.2.3) Latitude

-26.774707

(2.6.2.4) Longitude

26.997888

(2.6.2.5) Hazard classification

Hazardous

(2.6.2.6) Guidelines used

Select all that apply

✓ South Africa SANS 10286

(2.6.2.7) Tailings dam's activity

Select from:

Active

(2.6.2.8) Current tailings storage impoundment volume (Mm3)

69.7

(2.6.2.9) Planned tailings storage impoundment volume in 5 years (Mm3)

125.1

(2.6.2.10) Please explain

Harmony recognises the adverse impacts which tailings storage facilities (TSF) could pose on their surroundings and the knock-on impact that could have on its host communities. Harmony thus establishes a Zone of Influence boundary around all of its TSFs and manages their TSFs in line with the SANS 10286 standard, as well as their environmental codes. The Noligwa Gold Plant in South Africa has two sub-divided TSFs as well, called Mispah 1 and 2. In FY2024 these two dams held 69.7 million m3 of tailings together. The TSFs are wholly owned and controlled by Harmony. This TSF is associated with Moab Khotsong.

Row 8

(2.6.2.1) Tailings dam name/identifier

Kareerand

(2.6.2.2) Country/Area & River basin

South Africa

Orange

(2.6.2.3) Latitude

-26.817479

(2.6.2.4) Longitude

(2.6.2.5) Hazard classification

Hazardous

(2.6.2.6) Guidelines used

Select all that apply

✓ South Africa SANS 10286

(2.6.2.7) Tailings dam's activity

Select from:

Active

(2.6.2.8) Current tailings storage impoundment volume (Mm3)

237.55

(2.6.2.9) Planned tailings storage impoundment volume in 5 years (Mm3)

352

(2.6.2.10) Please explain

Harmony recognises the adverse impacts which tailings storage facilities (TSF) could pose on their surroundings and the knock-on impact that could have on its host communities. Harmony thus establishes a Zone of Influence boundary around all of its TSFs and manages their TSFs in line with the SANS 10286 standard, as well as their environmental codes. In FY2024 the Kareerand dams held 237.55 million m3 of tailings. The TSF is wholly owned and controlled by Harmony. This TSF is associated with Mine Waste Solutions.

Row 9

(2.6.2.1) Tailings dam name/identifier

Mponeng Complex TSF

(2.6.2.2) Country/Area & River basin

South Africa

Orange

(2.6.2.3) Latitude

-26.455988

(2.6.2.4) Longitude

27.400396

(2.6.2.5) Hazard classification

Hazardous

(2.6.2.6) Guidelines used

Select all that apply

✓ South Africa SANS 10286

(2.6.2.7) Tailings dam's activity

Select from:

Active

(2.6.2.8) Current tailings storage impoundment volume (Mm3)

25.8

(2.6.2.9) Planned tailings storage impoundment volume in 5 years (Mm3)

31.24

(2.6.2.10) Please explain

Harmony recognises the adverse impacts which tailings storage facilities (TSF) could pose on their surroundings and the knock-on impact that could have on its host communities. Harmony thus establishes a Zone of Influence boundary around all of its TSFs and manages their TSFs in line with the SANS 10286 standard, as well as their environmental codes. In FY2024 the Mponeng Complex TSF held 25.8 million m3 of tailings. The TSF is wholly owned and controlled by Harmony. This TSF is associated with Mponeng Mine.

Row 10

(2.6.2.1) Tailings dam name/identifier

Savuka 5a

(2.6.2.2) Country/Area & River basin

Botswana

Orange

(2.6.2.3) Latitude

-26.416264

(2.6.2.4) Longitude

27.398714

(2.6.2.5) Hazard classification

Hazardous

(2.6.2.6) Guidelines used

Select all that apply

✓ South Africa SANS 10286

(2.6.2.7) Tailings dam's activity

Select from:

Active

(2.6.2.8) Current tailings storage impoundment volume (Mm3)

10.8

(2.6.2.9) Planned tailings storage impoundment volume in 5 years (Mm3)

10.8

(2.6.2.10) Please explain

Harmony recognises the adverse impacts which tailings storage facilities (TSF) could pose on their surroundings and the knock-on impact that could have on its host communities. Harmony thus establishes a Zone of Influence boundary around all of its TSFs and manages their TSFs in line with the SANS 10286 standard, as well as their environmental codes. In FY2024 Savuka 5a TSF held 10.8 million m3 of tailings. The TSF is wholly owned and controlled by Harmony.

Row 11

(2.6.2.1) Tailings dam name/identifier

Savuka 5b

(2.6.2.2) Country/Area & River basin

South Africa

Orange

(2.6.2.3) Latitude

-26.416264

(2.6.2.4) Longitude

(2.6.2.5) Hazard classification

Hazardous

(2.6.2.6) Guidelines used

Select all that apply

✓ South Africa SANS 10286

(2.6.2.7) Tailings dam's activity

Select from:

Active

(2.6.2.8) Current tailings storage impoundment volume (Mm3)

8.73

(2.6.2.9) Planned tailings storage impoundment volume in 5 years (Mm3)

10.71

(2.6.2.10) Please explain

Harmony recognises the adverse impacts which tailings storage facilities (TSF) could pose on their surroundings and the knock-on impact that could have on its host communities. Harmony thus establishes a Zone of Influence boundary around all of its TSFs and manages their TSFs in line with the SANS 10286 standard, as well as their environmental codes. In FY2024 the Savuka 5b TSF held 8.73 million m3 of tailings. The TSF is wholly owned and controlled by Harmony.

Row 12

(2.6.2.1) Tailings dam name/identifier

Savuka 7a

(2.6.2.2) Country/Area & River basin

South Africa

Orange

(2.6.2.3) Latitude

-26.416264

(2.6.2.4) Longitude

27.398714

(2.6.2.5) Hazard classification

Hazardous

(2.6.2.6) Guidelines used

Select all that apply

✓ South Africa SANS 10286

(2.6.2.7) Tailings dam's activity

Select from:

Active

(2.6.2.8) Current tailings storage impoundment volume (Mm3)

29.01

(2.6.2.9) Planned tailings storage impoundment volume in 5 years (Mm3)

31.63

(2.6.2.10) Please explain

Harmony recognises the adverse impacts which tailings storage facilities (TSF) could pose on their surroundings and the knock-on impact that could have on its host communities. Harmony thus establishes a Zone of Influence boundary around all of its TSFs and manages their TSFs in line with the SANS 10286 standard, as well as their environmental codes. In FY2024 the Savuka 7a TSF held 29.01 million m3 of tailings. The TSF is wholly owned and controlled by Harmony.

Row 13

(2.6.2.1) Tailings dam name/identifier

Savuka 7b

(2.6.2.2) Country/Area & River basin

South Africa

Orange

(2.6.2.3) Latitude

-26.416264

(2.6.2.4) Longitude

27.398714

(2.6.2.5) Hazard classification

Hazardous

(2.6.2.6) Guidelines used

Select all that apply

✓ South Africa SANS 10286

(2.6.2.7) Tailings dam's activity

Sel	lect	from:	
\circ	ししし	II OIII.	

Active

(2.6.2.8) Current tailings storage impoundment volume (Mm3)

31.1

(2.6.2.9) Planned tailings storage impoundment volume in 5 years (Mm3)

34.4

(2.6.2.10) Please explain

Harmony recognises the adverse impacts which tailings storage facilities (TSF) could pose on their surroundings and the knock-on impact that could have on its host communities. Harmony thus establishes a Zone of Influence boundary around all of its TSFs and manages their TSFs in line with the SANS 10286 standard, as well as their environmental codes. In FY2024 the Savuka 7b TSF held 31.1 million m3 of tailings. The TSF is wholly owned and controlled by Harmony.

Row 14

(2.6.2.1) Tailings dam name/identifier

St Helena 4

(2.6.2.2) Country/Area & River basin

South Africa

Orange

(2.6.2.3) Latitude

-26.709771

(2.6.2.4) Longitude

28.034362

(2.6.2.5) Hazard classification

Hazardous

(2.6.2.6) Guidelines used

Select all that apply

✓ South Africa SANS 10286

(2.6.2.7) Tailings dam's activity

Select from:

Active

(2.6.2.8) Current tailings storage impoundment volume (Mm3)

31.28

(2.6.2.9) Planned tailings storage impoundment volume in 5 years (Mm3)

33.51

(2.6.2.10) Please explain

Harmony recognises the adverse impacts which tailings storage facilities (TSF) could pose on their surroundings and the knock-on impact that could have on its host communities. Harmony thus establishes a Zone of Influence boundary around all of its TSFs and manages their TSFs in line with the SANS 10286 standard, as well as their environmental codes. In FY2024 the St Helena 4 TSF held 31.28 million m3 of tailings. The TSF is wholly owned and controlled by Harmony. This TSF is associated with the Harmony One plant.

Row 15

(2.6.2.1) Tailings dam name/identifier

Hamata TSF

(2.6.2.2) Country/Area & River basin

Papua New Guinea

✓ Other, please specify: Watut River Catchment

(2.6.2.3) Latitude

-6.723669

(2.6.2.4) Longitude

146.9909

(2.6.2.5) Hazard classification

Hazardous

(2.6.2.6) Guidelines used

Select all that apply

✓ Australian National Committee on Large Dams (ANCOLD)

(2.6.2.7) Tailings dam's activity

Select from:

Active

(2.6.2.8) Current tailings storage impoundment volume (Mm3)

32.2

(2.6.2.9) Planned tailings storage impoundment volume in 5 years (Mm3)

6.1

(2.6.2.10) Please explain

Harmony recognises the adverse impacts which tailings storage facilities (TSF) could pose on their surroundings and the impact that could have on its host communities. Harmony thus establishes a Zone of Influence boundary around all of its TSFs and manages their TSFs in line with the ANCOLD guidelines, as well as the environmental legislative framework. The Hamata TSF is located in Papua New Guinea, at the Hidden Valley operation, and is wholly owned and controlled by Harmony. In FY2024 the dam held 32.2 million m3 of tailings. Gold mining tailings generally comprise of coarse and fine sand, water and the chemicals or reagents used in the mining and processing operations. The tailings are generated as a waste stream from our mining and milling operations that produce gold. Tailings are disposed of in the Hamata TSF on the mining lease.

Row 16

(2.6.2.1) Tailings dam name/identifier

Harmony Gold Mine (Saaiplaas Plant): St Helena 123

(2.6.2.2) Country/Area & River basin

Botswana

Orange

(2.6.2.3) Latitude

-26.709771

(2.6.2.4) Longitude

28.034362

(2.6.2.5) Hazard classification

Hazardous

(2.6.2.6) Guidelines used

Select all that apply

✓ South Africa SANS 10286

(2.6.2.7) Tailings dam's activity

Select from:

Active

(2.6.2.8) Current tailings storage impoundment volume (Mm3)

46.82

(2.6.2.9) Planned tailings storage impoundment volume in 5 years (Mm3)

73.51

(2.6.2.10) Please explain

Harmony recognises the adverse impacts which tailings storage facilities (TSF) could pose on their surroundings and the knock-on impact that could have on its host communities. Harmony thus establishes a Zone of Influence boundary around all of its TSFs and manages their TSFs in line with the SANS 10286 standard, as well as their environmental codes. The Saaiplass St Helena 123 TSF is also situated in South Africa and held 46.82 million m3 of tailings in FY2024. The TSF is wholly owned and controlled by Harmony. This TSF is associated with the Saaiplaas plant. [Add row]

(2.6.3) To manage the potential impacts to human health or water ecosystems associated with the tailings dams in your control, what procedures are in place for all of your dams?

Row 1

(2.6.3.1) Procedure

Select from:

✓ Acceptable risk levels

(2.6.3.2) Detail of the procedure

Acceptable risk levels

- ☑ Establishment of site-level guidance and standards for acceptable risk levels based on an evaluation of potential chemical and physical risks
- ☑ Establishment of site-level guidance and standards for acceptable risk levels for third party safety in consultation with potentially affected communities, employees and relevant government bodies
- ☑ Establishment of site-level guidance and standards for acceptable risk levels across all life stages including post-closure
- ☑ Establishment of company-wide standards for acceptable risk levels that follow a company policy to eliminate or minimize water-related risks associated with tailings dams

(2.6.3.3) Please explain

Details of procedures to manage potential impacts on human health and ecosystems: Harmony implements a Mandatory Code of Practice (CoP) for Mine Residue Deposits (MRD), which governs the management of all TSFs. The CoP is reviewed annually to remain aligned with evolving best practice. The CoP sets out procedures to: • Minimise the volumes of stored material; • Ensure TSFs are physically and chemically stable and safe; and • Undertake progressive rehabilitation to return mine-affected land to productive use. Additional risk controls include penstocks for controlled draw-down and water recirculation, toe trenches, berms, return water dams, erosion protection, and maintaining freeboard capacity. Freeboard monitoring is enhanced by the use of drones. Frequency of reviews: • Daily inspections of TSFs are conducted by qualified operational staff. • Monthly reviews are undertaken by plant management. • inspections are performed by independent third-party experts, who provide formal reports. • The CoP framework itself is reviewed annually and applied across all Harmony facilities in South Africa and Papua New Guinea, with Australian operations following ANCOLD guidelines and host country regulations. Competence requirements: All inspections and audits are undertaken by staff and contractors with the required competence. This includes professional engineers, trained TSF operators, and third-party specialists accredited in tailings facility design, management and closure. Rationale for implementation: The CoP ensures TSFs are fully integrated into Harmony's risk management processes. Quantification of acceptable risk levels is embedded in the CoP, ensuring that risks to human health and ecosystems are maintained within defined tolerances. Level and exceptions: These procedures are applied company-wide, ensuring consistent implementation. No exceptions apply across Harmony's operations. Ongoing development: Harmony is progressively aligning its TSF management practices with aspects of the Global Industry Standard on Tailings Management and expanding the use of real-time monitoring technologies to strengthen early warning and risk response capabilities.

Row 2

(2.6.3.1) Procedure

Select from:

Operating plan

(2.6.3.2) Detail of the procedure

Operating plan

- ☑ An operating plan that is aligned with your established acceptable risk levels and critical controls framework
- ✓ An operating plan that includes the operating constraints of the dam and its construction method
- ✓ An operating plan that considers the consequences of breaching the operating constraints of the dam.
- ✓ An operating plan that includes periodic review of the foundations and slope materials
- ☑ An operating plan that evaluates the effectiveness of the risk management measures and whether performance objectives are being met

(2.6.3.3) Please explain

Details of procedures to manage potential impacts on human health and ecosystems Harmony manages its tailings storage facilities (TSFs) in South Africa through a Mandatory Code of Practice (CoP) for Mine Residue Deposits (MRDs), and in Papua New Guinea and Australia in accordance with ANCOLD guidelines which requires that each site develops a detailed operating plan. These operating plans are company-wide requirements and are tailored to the design and conditions of each TSF. Key elements of the operating plan • Presentation of design basis, construction methods and operating constraints and procedures: Each plan sets out the design limits and construction methodologies of the dam, including berms, return water dams, drainage structures, and slope designs. Operations are required to remain within these constraints at all times. • Consequences of breaching operating constraints: Plans explicitly assess the risks to human health, communities, and ecosystems should the design limits be exceeded, and outline emergency and mitigation measures. • Periodic review of foundations and slope materials: Foundations and side slopes are inspected during daily and monthly reviews, with formal evaluations undertaken quarterly by consulting engineers. Any damage, such as after heavy rainfall, triggers immediate repair and reinforcement. • Evaluation of effectiveness of risk management measures: Operating plans require continuous monitoring of performance indicators (freeboard levels, seepage rates, slope stability, and water quality) to determine whether risk controls are effective and whether performance objectives are being achieved. Drone monitoring enhances freeboard and erosion control reviews. Frequency of reviews and Daily inspections by trained site personnel. • Monthly internal reviews by operational staff and engineers. • Quarterly external reviews by consulting engineers, with independent reports, • Annual audits (internal and external) to verify compliance and integrity, Rationale and scope These procedures aim to manage TSFswithin safe design limits, incorporate the consequences of breaching those limits, and continuously evaluate the effectiveness of risk controls. They apply across Harmony's operations, with South African TSFs managed under the CoP and SANS 10286/DMRE requirements, and international TSFs managed in line with host country regulations and ANCOLD guidelines. No exceptions apply. [Add row]

C3. Disclosure of risks and opportunities

(3.1) Have you identified any environmental risks which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?

Climate change

(3.1.1) Environmental risks identified

Select from:

✓ Yes, both in direct operations and upstream/downstream value chain

Water

(3.1.1) Environmental risks identified

Select from:

✓ Yes, both in direct operations and upstream/downstream value chain

Plastics

(3.1.1) Environmental risks identified

Select from:

✓ No

(3.1.2) Primary reason why your organization does not consider itself to have environmental risks in your direct operations and/or upstream/downstream value chain

Select from:

☑ Environmental risks exist, but none with the potential to have a substantive effect on our organization

(3.1.3) Please explain

Harmony acknowledges the impact that plastic pollution has on the environment. However, plastic does not form a substantive part of Harmony's business operations.

Biodiversity

(3.1.1) Environmental risks identified

Select from:

✓ No

(3.1.2) Primary reason why your organization does not consider itself to have environmental risks in your direct operations and/or upstream/downstream value chain

Select from:

✓ Evaluation in progress

(3.1.3) Please explain

Harmony acknowledges the impact mining has on the environment, which includes on biodiversity. Harmony complies with all biodiversity laws and regulations in operating jurisdictions. Harmony is currently in the process, with the Endangered Wildlife Trust, to develop its biodiversity footprint. In FY24 the baseline data was compiled. Harmony is still in the complete evaluation process and will publish this information in the public domain once the work has been complete and signed off. [Fixed row]

(3.1.1) Provide details of the environmental risks identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.

Climate change

(3.1.1.1) Risk identifier

Select from:

✓ Risk1

(3.1.1.3) Risk types and primary environmental risk driver

Acute physical

✓ Flooding (coastal, fluvial, pluvial, groundwater)

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

✓ South Africa

(3.1.1.9) Organization-specific description of risk

Information on the risk driver: Climate modelling for South Africa shows increased temperatures and droughts, followed by increases in heavy precipitation and floods. Surface flooding, driven by climate change, therefore poses a challenge in relation to Harmony's tailings storage facilities (TSF).., specifically to TSF's that are located near sensitive areas or ecosystems, such as the Kareerand TSF. Kareerand is a large, state-of-the-art tailings storage site located within 1.2 km of the Vaal River. The Facility is operated as part of Mine Waste Solutions (MWS), which Harmony acquired in 2020. The consequences of surface flooding on Harmony's direct operations, such as Kareerand include the possibility of TSF failure The failure of any TSF is classified in our environmental risk register as "catastrophic", and impacts both our direct operations (with regards to operational capacity) as well as our downstream value chain. The value chain is affected by the severe environmental impacts of pollution, as well as the impact on human life. In the case of Kareerand TSF, this impact is amplified given its proximity to one of South Africa's largest rivers, the Vaal River. Notable example: A notable example of TSF failure was the Jagersfontein dam collapse in September 2022 in the Free State province. This tailings dam breach released a large mudflow covering approximately 9 kilometres, resulted in two deaths, many injuries, and destruction of homes and farmland

(3.1.1.11) Primary financial effect of the risk

Select from:

☑ Decreased revenues due to reduced production capacity

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

✓ Short-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

Unlikely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Surface flooding events pose a significant acute physical risk to Harmony's South African operations, which generate approximately 90% of the group's revenue. This risk is particularly critical for tailings storage facilities (TSFs) such as Kareerand, which processes roughly 400 kilograms of gold per month. A severe surface flooding event leading to a TSF failure at Kareerand would have a major financial impact on Harmony. This risk would manifest in several ways: a) Operationally, as Kareerand is the sole deposition facility for the Mine Waste Solutions (MWS) surface retreatment operation, a TSF failure could halt operations completely for a period ranging from a few days to up to two months depending on the severity of the incident. b) Financially, Harmony's position would be severely affected due to the catastrophic costs related to clean-up, restoration, regulatory compliance, and associated liabilities. c) Additionally, such an event would disrupt both short-term and long-term cash flow. While Harmony has not yet quantified the financial impact of a TSF failure, all such failures are classified as 'catastrophic' and therefore represent substantial risks to the company.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

✓ No

(3.1.1.26) Primary response to risk

Infrastructure, technology and spending

✓ Improve maintenance of infrastructure

(3.1.1.27) Cost of response to risk

0

(3.1.1.28) Explanation of cost calculation

Harmony is in the process of quantifying the impact of climate change risks on the business operations, which includes the quantification of the responses to climate change.

(3.1.1.29) Description of response

Harmony is in the process of quantifying the impact of climate change risks on the business operations, which includes the quantification of the responses to climate change.

Water

(3.1.1.1) Risk identifier

Select from:

✓ Risk2

(3.1.1.3) Risk types and primary environmental risk driver

Chronic physical

✓ Water stress

(3.1.1.4) Value chain stage where the risk occurs

Select from:

✓ Direct operations

(3.1.1.6) Country/area where the risk occurs

Select all that apply

✓ South Africa

(3.1.1.7) River basin where the risk occurs

Select all that apply

Orange

(3.1.1.9) Organization-specific description of risk

Water stress, including scarcity and security of supply, is a material climate-related risk for Harmony in South Africa. Water is used throughout mining processes, and any disruption can directly affect operational continuity. Water stresses can reduce production capacity or cause stoppages, negatively impacting revenues and profitability due to the significant financial implications of production halts. The WWF Water Risk Filter indicates medium to high water stress for all of Harmony's South African operations. This aligns with local challenges under the National Water Act 36 of 1998, which regulates water allocation and prioritises domestic, agricultural, and ecological needs. Direct abstraction from surface water bodies is restricted; Harmony does not abstract from rivers except at Kalgold, which abstracts groundwater from an aquifer, and Moab Khotsong, which has a small reticulation allocation from the Vaal River. Most of the water consumed by Harmony is supplied through bulk water service providers, supplemented by surface run-off, produced water, recycled process water, and boreholes. As a way to support the security of supply, Harmony has engaged with local Municipalities to take over the function of running the Wastewater Treatment Works, such as at Witpan.

(3.1.1.11) Primary financial effect of the risk

Select from:

✓ Decreased revenues due to reduced production capacity

(3.1.1.12) Time horizon over which the risk is anticipated to have a substantive effect on the organization

Select all that apply

✓ Short-term

(3.1.1.13) Likelihood of the risk having an effect within the anticipated time horizon

Select from:

Very likely

(3.1.1.14) Magnitude

Select from:

✓ High

(3.1.1.16) Anticipated effect of the risk on the financial position, financial performance and cash flows of the organization in the selected future time horizons

Water stress, whether due to droughts or other factors causing intermittent bulk water supply, has the potential to lead to production stoppages and financial losses. For Harmony's South African operations, the calculation takes into account factors such as gold production volume, gold price, revenue loss, cash operating costs, and capital expenditure. Based on these considerations, the total potential daily loss in revenue for all of Harmony's South African operations amounts to approximately R188 million. In aggregate, a work stoppage at any of the individual operations, or a combined stoppage at multiple operations, which exceeds 10% of revenue generated from South Africa would be considered substantive. This equals a period of 29 days' work stoppage.

(3.1.1.17) Are you able to quantify the financial effect of the risk?

Select from:

Yes

(3.1.1.19) Anticipated financial effect figure in the short-term – minimum (currency)

188000000

(3.1.1.20) Anticipated financial effect figure in the short-term – maximum (currency)

54000000000

(3.1.1.25) Explanation of financial effect figure

Approach utilized for calculation: The financial effect of water stress in South Africa was quantified by estimating the potential daily revenue loss from production stoppages across Harmony's operations. Calculation method employed: Harmony used site-level gold production, realised gold prices, and operating data for FY24 to determine the average daily revenue exposure. This figure was then multiplied by the estimated duration of stoppages to establish the minimum and maximum financial effect. How the figure relates to the primary effect: The minimum short term anticipated financial effect is equal to the loss in revenue from one day work stoppage. The maximum short term anticipated financial effect is equal to the loss in revenue of 29 days of work stoppage. Work stoppage can either occur at a single site for the whole duration, or at different sites resulting in the accumulated days of work stoppage. Numerical values used in the calculation: Average daily revenue (South African operations): ZAR 188 million Closure duration: 1 or 29 days days Total estimated revenue loss: ZAR 188 million × 1 = ZAR 188 million ZAR 188 million × 29 = ZAR 5.4 billion Underlying assumptions: The calculation assumes that the average daily revenue figure is representative of the majority of Harmony's South African portfolio located in the South Africa. Stoppages may occur either as a complete shutdown at a single site or as accumulated interruptions across several sites. The estimate reflects the short-term horizon and does not account for longer-term reputational or secondary effects.

(3.1.1.26) Primary response to risk

Infrastructure, technology and spending
✓ Increase environment-related capital expenditure

(3.1.1.27) Cost of response to risk

14503739

(3.1.1.28) Explanation of cost calculation

Explanation of cost calculation The cost of response for managing water stress in South Africa has been calculated based on the operational expenditure (OPEX) in FY24 associated with operating and maintaining water treatment and pumping infrastructure across Harmony's Free State and Gauteng operations. These costs represent direct investments in ensuring continuity of water supply and treatment capacity, which are essential to mitigating the risk of production stoppages caused by water scarcity or reduced water quality. Numerical values used in the calculation: Witpan water treatment plant and pumping infrastructure: ZAR 3,700,000 Carletonville water treatment plant: ZAR 5,000,000 Stilfontein water treatment plant: ZAR 5,000,000 Infrastructure development – Witpan pumping (Free State): ZAR 803,739 The total cost of response for FY24 is therefore: 3,700,000+5,000,000+5,000,000+803,739=ZAR 14,503,739 These figures reflect the annual OPEX directly linked to water management

(3.1.1.29) Description of response

In FY2024, Harmony invested in water treatment capacity and pumping infrastructure to strengthen operational resilience against water stress and reduce reliance on external bulk water supply. The total OPEX costs in FY24 for water management infrastructure amounted to ZAR 14,503,739, which included: Witpan water treatment plant and pumping infrastructure: ZAR 3,700,000 Carletonville water treatment plant: ZAR 5,000,000 Stilfontein water treatment plant: ZAR 5,000,000 Infrastructure development — Witpan pumping (Free State): ZAR 803,739 These initiatives ensured that no operational delays were experienced due to water stress in the reporting year. In addition, refurbishment of municipal water treatment plants at Witpan, Carletonville, and Stilfontein improved both capacity and reliability of supply. Future procedures include the planned expansion of the Nyala facility and construction of a new water treatment plant at Covalent. The effect of these responses is twofold: they reduce potable water demand by recycling fissure water for reuse in mining processes, while also ensuring treated water meets discharge standards, thereby maintaining compliance. This contributes to cost savings and enhances resilience during periods of scarcity. Additional initiatives, such as agricultural applications of treated water for cultivating high-income crops, demonstrate Harmony's commitment to sustainable and economically viable water use. Harmony also implements measures to reduce absolute potable water consumption, including optimizing pumping demand, repairing leaks, and applying engineering solutions. These actions are monitored as part of Harmony's sustainability-linked loan performance indicators. By reducing reliance on potable water, Harmony alleviates pressure on municipal infrastructure and improves water availability for local communities. [Add row]

(3.1.2) Provide the amount and proportion of your financial metrics from the reporting year that are vulnerable to the substantive effects of environmental risks.

Climate change

(3.1.2.1) Financial metric

Select from:

☑ Other, please specify :Share price

(3.1.2.3) % of total financial metric vulnerable to transition risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.5) % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.7) Explanation of financial figures

Harmony is in the process of finalizing the work to quantify the financial impact of climate change risks and vulnerabilities on the business.

Water

(3.1.2.1) Financial metric

Select from:

Revenue

(3.1.2.3) % of total financial metric vulnerable to transition risks for this environmental issue

Select from:

✓ Less than 1%

(3.1.2.4) Amount of financial metric vulnerable to physical risks for this environmental issue (unit currency as selected in 1.2)

$(3.1.2.5)\,$ % of total financial metric vulnerable to physical risks for this environmental issue

Select from:

☑ 81-90%

(3.1.2.7) Explanation of financial figures

Revenue earned from the South Africa operations account for the majority of the Harmony Group's revenue (89.5%). In line with the guidance, all assets involved in the generation of revenue are considered vulnerable to physical risks in the time horizon identified. Therefore, the South African proportion of total group revenue is considered the financial figure exposed to the risk of drought. Vulnerability and the associated effect on revenue will be further refined in future. The value for transition risks is zero, since no transition risks are quantified.

[Add row]

(3.2) Within each river basin, how many facilities are exposed to substantive effects of water-related risks, and what percentage of your total number of facilities does this represent?

Row 1

(3.2.1) Country/Area & River basin

Papua New Guinea

✓ Other, please specify :Watut River Catchment

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

Select all that apply

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

☑ 1-25%

(3.2.7) Production value for the metals and mining activities associated with these facilities (currency)

644795000

(3.2.10) % organization's total global revenue that could be affected

Select from:

✓ 11-20%

(3.2.11) Please explain

Hidden Valley, located in Papua New Guinea, is the only Harmony facility that is exposed to substantive effects of water-related risks. including sediment loading, hydropower disruption, extreme weather impacts on infrastructure and community-related water concerns. The production value from Hidden Valley currently represents 10.1% of total consolidated revenue (Harmony's total global revenue was ZAR 61.38 billion in 2024). Hidden Valley draws water from the Watut River Catchment, which drains about 3,300 square kilometers of southwestern Papua New Guinea. The Fly river basin of this small island nation is sensitive to sediment discharges from mining, due to steep topography. The country's challenging geography gives it significant hydroelectric potential. The country's topography includes nine large hydrological drainage basins, fed by a vast network of large rivers of which the Fly River is the second largest. The country's energy and transport infrastructure are vulnerable to severe weather events which can disrupt imports of supplies, as well as drought which may interrupt hydro-electricity generation. Harmony is addressing risks in this river basin through dedicated engagement with suppliers and stakeholders involved in the management and early-warning systems of the catchment. Harmony invests in keeping larger stock supplies on site, and uses diesel to mitigate the impact of electricity interruptions.

Row 2

(3.2.1) Country/Area & River basin

South Africa

Orange

(3.2.2) Value chain stages where facilities at risk have been identified in this river basin

✓ Direct operations

(3.2.3) Number of facilities within direct operations exposed to water-related risk in this river basin

24

(3.2.4) % of your organization's total facilities within direct operations exposed to water-related risk in this river basin

Select from:

☑ 76-99%

(3.2.7) Production value for the metals and mining activities associated with these facilities (currency)

54934205000

(3.2.10) % organization's total global revenue that could be affected

Select from:

☑ 81-90%

(3.2.11) Please explain

All of Harmony's facilities located in South Africa are exposed to substantive effects of water-related risks. Harmony's total global revenue was ZAR 61.37 billion in 2024. The production from South Africa currently accounts for the majority of production, contributing approximately 84.9% of total consolidated revenue. The Orange River basin is the most economically important basin in South Africa. This catchment supplies vital freshwater for agriculture, industries, urban and peri-urban users, and is responsible for providing sewerage and WASH infrastructure to the majority of South Africa's population. The system faces water scarcity risks, and is also subjected to extreme weather events and flooding at times. Harmony relies on adequate fresh water supply for its own operations, and also faces risks from flooding which can cause TSF failure. Since all of Harmony's South African operations are located in the Orange River basin, our water risks are concentrated in a geographic area that also faces significant social pressures from competing demands for water supply. We address these risks by simultaneously improving our on-site recycling capabilities and water use efficiencies, and investing in infrastructure to secure our TSFs and surrounding communities against flooding damages [Add row]

(3.3) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

(3.3.3) Comment
Harmony have not received any water -related fines or penalties in its operating jurisdictions, as indicated in its publicly available ESG data workbook. [Fixed row]
(3.4) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for violation of biodiversity-related regulation?
(3.4.1) Any penalties for violation of biodiversity-related regulation?
Select from: ✓ No
(3.4.2) Comment
Harmony have not received any environmental -related fines or penalties in its operating jurisdictions, as indicated in its publicly available ESG data workbook. [Fixed row]
(3.5) Are any of your operations or activities regulated by a carbon pricing system (i.e. ETS, Cap & Trade or Carbon Tax)?
Select from: ✓ Yes
(3.5.1) Select the carbon pricing regulation(s) which impact your operations.

(3.3.1) Water-related regulatory violations

Select from:

✓ No

✓ South Africa carbon tax

(3.5.3) Complete the following table for each of the tax systems you are regulated by.

South Africa carbon tax

(3.5.3.1) Period start date

12/31/2023

(3.5.3.2) **Period end date**

12/30/2024

(3.5.3.3) % of total Scope 1 emissions covered by tax

8.89

(3.5.3.4) Total cost of tax paid

687445.79

(3.5.3.5) Comment

South African taxable entities are liable for payment on an annual basis, related to specified direct emissions in a calendar year. Harmony's reported scope 1 GHG emissions liable for carbon tax include: Combustion of diesel and jet fuel by generators Fuel combustion by boilers Railway diesel combustion Wastewater treatment and managed waste disposal sites. Our carbon tax considerations align with the successful implementation of our decarbonisation strategy.

[Fixed row]

(3.5.4) What is your strategy for complying with the systems you are regulated by or anticipate being regulated by?

Regulated systems: South African Carbon Tax Act (administered via SARS) and the National Greenhouse Gas Emissions Reporting Regulations (reported to DFFE via SAGERS). Compliance strategy (current): Governance and accountability: Defined climate change policy (which is currently being updated), compliance calendar that aligns with the national GHG reporting deadlines. MRV (measure–report–verify): Facility-level scope 1 inventory under operational control, aligned to DFFE Technical Guidelines; documented methodologies, auditable evidence trails. Mandatory reporting: Annual submission of emissions to DFFE though the SAGERS

portal. Carbon tax calculation and payment: Determine taxable emissions for activities above thresholds; apply eligible allowances; retire qualifying offsets within permitted limits; file returns and pay by due dates. In practice: Harmony complies by reporting emissions under the mandatory scheme and paying carbon tax for operations that exceed the relevant thresholds, while actively reducing its GHG emissions in line with its decarbonization plan, and its climate change KPI's.

(3.6) Have you identified any environmental opportunities which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future?

Climate change

(3.6.1) Environmental opportunities identified

Select from:

✓ Yes, we have identified opportunities, and some/all are being realized

Water

(3.6.1) Environmental opportunities identified

Select from:

✓ Yes, we have identified opportunities, and some/all are being realized

Biodiversity

(3.6.1) Environmental opportunities identified

Select from:

✓ No

(3.6.2) Primary reason why your organization does not consider itself to have environmental opportunities

Select from:

☑ Evaluation in progress

(3.6.3) Please explain

Harmony acknowledges the impact mining has on the environment, which includes on biodiversity. Harmony complies with all biodiversity laws and regulations in operating jurisdictions. Harmony is currently in the process, with the Endangered Wildlife Trust, to develop its biodiversity footprint. In FY24 the baseline data was compiled. Harmony is still in the complete evaluation process and will publish this information in the public domain once the work has been complete and signed off. [Fixed row]

(3.6.1) Provide details of the environmental opportunities identified which have had a substantive effect on your organization in the reporting year, or are anticipated to have a substantive effect on your organization in the future.

Climate change

(3.6.1.1) Opportunity identifier

Select from:

✓ Opp1

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Resilience

✓ Increased resilience to impacts of climate change

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

✓ Direct operations

(3.6.1.5) Country/area where the opportunity occurs

Select all that apply

- ✓ Papua New Guinea
- South Africa

(3.6.1.8) Organization specific description

Harmony has recognised a significant opportunity to enhance the resilience of its gold mining operations concerning climate-related risks through access to green and sustainability-linked financing. These facilities, which include a R1.5 billion green loan and sustainability-linked revolving credit facility, support Harmony's decarbonisation strategy and are tied to key performance indicators (KPIs) aligned with its business strategy and ESG targets. One of these KPIs is reducing Scope 1 and 2 emissions below 3.8 MTCO2e by 2027, with a long-term goal of reaching net zero by 2045. To achieve this, Harmony has committed to increasing renewable energy use to 25% of electricity consumption by 2027. This opportunity is considered substantive under Harmony's framework as it meets financial materiality thresholds (cost savings and resilience benefits exceeding 0.75% of revenue) and strengthens operational efficiency and stakeholder trust. Sungazer 1 delivered 30MW of solar PV, generating 65.3GWh annually. Sungazer 2 will add 100MW by FY27, with Sungazer 3 & ext Phase 3 (108MW) and Phase 4 (100MW) planned. In parallel, Harmony is negotiating 200MW of PPAs and 260MW of wheeled wind. The opportunity to roll out renewable energy is largely located in South Africa, where most energy-intensive operations are situated and where the emissions and energy cost savings potential is greatest

(3.6.1.9) Primary financial effect of the opportunity

Select from:

✓ Increased access to capital at lower/more favorable rates

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

Select all that apply

☑ The opportunity has already had a substantive effect on our organization in the reporting year

(3.6.1.12) Magnitude

Select from:

High

(3.6.1.13) Effect of the opportunity on the financial position, financial performance and cash flows of the organization in the reporting period

Financial Position: The sustainability-linked loan has had a significant impact on Harmony's financial position by introducing performance-based interest rate adjustments tied to ESG KPIs, which include greenhouse gas (GHG) emissions targets. These adjustments, whether increases or decreases in interest rates, depend on the company's performance against set sustainability metrics. Harmony maintained a healthy headroom in the form of cash and undrawn facilities at the end of June 2024, providing a resilient buffer for financial stability. Financial Performance: Harmony's performance against its ESG KPIs directly affects the cost of borrowing. For FY24, Harmony achieved its targets for GHG emission reductions, resulting in favourable interest rate adjustments. This achievement has positive implications for the company's financial performance by reducing the cost of debt. The improved interest cover ratio and leverage indicate strong financial health and operational efficiency. Cash Flows: The sustainability-linked loan has also impacted cash flows through the drawdowns and repayments associated with these facilities. Significant drawdowns and repayments during the year, coupled with adjustments in interest rates based on ESG performance, have influenced the net cash

flows. Harmony reported an increase in operating free cash flow, which was driven by better performance and favourable gold prices, further supported by the cost benefits from meeting ESG targets.

(3.6.1.15) Are you able to quantify the financial effects of the opportunity?

Select from:

Yes

(3.6.1.16) Financial effect figure in the reporting year (currency)

2919000

(3.6.1.23) Explanation of financial effect figures

These facilities include a sustainability-linked R2.95 billion revolving credit facility, a R1.5 billion green loan facility, and a \$400 million sustainability-linked facility, which is therefore considered the financial impact of this opportunity since it is accessed at reduced interest rates when we meet our ESG targets associated with the facilities. The sustainability-linked loans align with the company's ESG and sustainable development targets. R300 million was drawn from the R2.5 billion facility in the reporting year. This figure is not calculated but is based on our financial disclosures for the year. No assumptions were made in determining this figure.

(3.6.1.24) Cost to realize opportunity

103000000

(3.6.1.25) Explanation of cost calculation

Costs of the Sustainability-Linked Loan: The sustainability-linked loans incur typical borrowing costs such as interest expenses, issue costs, and amortization of these costs. The interest rate applied to these loans can be adjusted based on the company's performance against specific Environmental, Social, and Governance (ESG) Key Performance Indicators (KPIs). These adjustments can either increase or decrease the interest rate annually depending on whether Harmony meets its predefined ESG targets. Interest Rate Adjustments: The interest rates on the sustainability-linked loans are influenced by Harmony's achievement of ESG KPIs, including: Greenhouse gas emissions reduction Renewable energy consumption For each KPI that is met, the interest rate margin is decreased by one basis point. Conversely, for each KPI not met, the interest rate margin is increased by one basis point. These adjustments are cumulative over a three-year measuring period and impact the interest rates for the subsequent financial year. Interest Rates and Related Costs: As of FY24, the effective interest rates on Harmony's sustainability-linked loans are as follows: R2.95 billion Rand Revolving Credit Facility (RCF): 9.2% USD400 million sustainability-linked facility: 6.8% These rates reflect the adjustments based on Harmony's ESG performance during the year.

(3.6.1.26) Strategy to realize opportunity

As part of its comprehensive ESG approach and strategy to realise this opportunity, Harmony operates with four strategic pillars, one of which is dedicated to addressing ESG considerations. Within this ESG pillar, the company places great importance on its robust water strategy. This opportunity, to access green financing that contains a water stewardship component, is therefore deemed substantial. To realize this opportunity, Harmony is committed to achieving the KPIs outlined in the loan agreement. Greenhouse Gas Emissions: FY24 target for Scope 1 and Scope 2- 4 279 tCO2e Renewable Energy: FY24 target for Energy from Solar and Energy from Wheeling- 8% In particular, the reduction of absolute potable water consumption, which is essential to Harmony's core sustainability and business strategy. By decreasing potable water demand from its mining operations, Harmony aims to alleviate pressure on strained local water treatment and distribution infrastructure, increase water availability for communities (particularly during droughts and water scarcity due to climate-related challenges), and enhance the resilience of local municipal systems in the face of climate change.

Water

(3.6.1.1) Opportunity identifier

Select from:

✓ Opp1

(3.6.1.3) Opportunity type and primary environmental opportunity driver

Resilience

✓ Increased resilience to impacts of climate change

(3.6.1.4) Value chain stage where the opportunity occurs

Select from:

✓ Direct operations

(3.6.1.5) Country/area where the opportunity occurs

Select all that apply

- ✓ Papua New Guinea
- ✓ South Africa

(3.6.1.6) River basin where the opportunity occurs

Select all that apply

- Orange
- ✓ Other, please specify :Watut River Basin

(3.6.1.8) Organization specific description

Harmony has recognized a significant opportunity to enhance the resilience of its gold mining operations concerning water-related factors. This opportunity is a sustainability-linked loan, which served as a refinancing solution for the previous revolving credit facility. This opportunity to access green financing that contains a water stewardship component, is therefore deemed substantial as it represents 51% of the market capitalization. The newly secured loan is tied to sustainability-linked key performance indicators (KPIs) that align with the company's overall business strategy and environmental, social, and governance (ESG) targets. To realize this opportunity, Harmony is committed to achieving the KPIs outlined in the loan agreement. One of these KPIs is the reduction of absolute potable water consumption, which is essential to Harmony's core sustainability and business strategy. By decreasing potable water demand from its mining operations, Harmony aims to alleviate pressure on strained local water treatment and distribution infrastructure, increase water availability for communities (particularly during droughts and water scarcity due to climate-related challenges), and enhance the resilience of local municipal systems in the face of climate change.

(3.6.1.9) Primary financial effect of the opportunity

Select from:

✓ Increased access to capital at lower/more favorable rates

(3.6.1.10) Time horizon over which the opportunity is anticipated to have a substantive effect on the organization

Select all that apply

☑ The opportunity has already had a substantive effect on our organization in the reporting year

(3.6.1.12) Magnitude

Select from:

✓ High

(3.6.1.13) Effect of the opportunity on the financial position, financial performance and cash flows of the organization in the reporting period

Financial Position: The sustainability-linked loan has had a significant impact on Harmony's financial position by introducing performance-based interest rate adjustments tied to ESG KPIs, which include water consumption targets. These adjustments, whether increases or decreases in interest rates, depend on the company's performance against set sustainability metrics. Harmony maintained a healthy headroom in the form of cash and undrawn facilities at the end of June 2024, providing a included available facilities and cash, providing a robust buffer for financial stability. Financial Performance: Harmony's performance against its

ESG KPIs directly affects the cost of borrowing. For FY24, Harmony achieved its targets for water consumption, resulting in favourable interest rate adjustments. This achievement has positive implications for the company's financial performance by reducing the cost of debt. The improved interest cover ratio and leverage indicate strong financial health and operational efficiency. Cash Flows: The sustainability-linked loan has also impacted cash flows through the drawdowns and repayments associated with these facilities. Significant drawdowns and repayments during the year, coupled with adjustments in interest rates based on ESG performance, have influenced the net cash flows. Harmony reported an increase in operating free cash flow, which was driven by better performance and favourable gold prices, further supported by the cost benefits from meeting ESG targets.

(3.6.1.15) Are you able to quantify the financial effects of the opportunity?

Select from:

Yes

(3.6.1.16) Financial effect figure in the reporting year (currency)

2919000

(3.6.1.23) Explanation of financial effect figures

These facilities include a sustainability-linked R2.5 billion revolving credit facility, a R1.5 billion green loan facility, and a \$400 million sustainability-linked facility, which is therefore considered the financial impact of this opportunity since it is accessed at reduced interest rates when we meet our ESG targets associated with the facilities. The sustainability-linked loans align with the company's ESG and sustainable development targets. ZAR 300 million was drawn from the R2.5 billion facility in the reporting year. This figure is not calculated but is based on our financial disclosures for the year. No assumptions were made in determining this figure

(3.6.1.24) Cost to realize opportunity

103000000

(3.6.1.25) Explanation of cost calculation

Costs of the Sustainability-Linked Loan: The sustainability-linked loans incur typical borrowing costs such as interest expenses, issue costs, and amortization of these costs. The interest rate applied to these loans can be adjusted based on the company's performance against specific Environmental, Social, and Governance (ESG) Key Performance Indicators (KPIs). These adjustments can either increase or decrease the interest rate annually depending on whether Harmony meets its predefined ESG targets. Interest Rate Adjustments: The interest rates on the sustainability-linked loans are influenced by Harmony's achievement of ESG KPIs, including: Water consumption targets For each KPI that is met, the interest rate margin is decreased by one basis point. Conversely, for each KPI not met, the interest rate margin is increased by one basis point. These adjustments are cumulative over a three-year measuring period and impact the interest rates for the subsequent financial year. Interest Rates and Related Costs: As of FY23, the effective interest rates on Harmony's sustainability-linked loans are as follows: R2.5 billion Rand Revolving Credit Facility (RCF): 9.2% US400 million sustainability-linked facility: 6.8% These rates reflect the adjustments based on Harmony's ESG performance during the year.

(3.6.1.26) Strategy to realize opportunity

As part of its comprehensive ESG approach and strategy to realise this opportunity, Harmony operates with four strategic pillars, one of which is dedicated to addressing ESG considerations. Within this ESG pillar, the company places great importance on its robust water strategy. This opportunity, to access green financing that contains a water stewardship component, is therefore deemed substantial. To realize this opportunity, Harmony is committed to achieving the KPIs outlined in the loan agreement. Water Recycling: Target of 50% recycled by FY27; actual recycling rate achieved was 74%. Reduction in Potable Water Consumption: Target of 10% reduction from baseline; actual reduction achieved was 9% In particular, the reduction of absolute potable water consumption, which is essential to Harmony's core sustainability and business strategy. By decreasing potable water demand from its mining operations, Harmony aims to alleviate pressure on strained local water treatment and distribution infrastructure, increase water availability for communities (particularly during droughts and water scarcity due to climate-related challenges), and enhance the resilience of local municipal systems in the face of climate change [Add row]

(3.6.2) Provide the amount and proportion of your financial metrics in the reporting year that are aligned with the substantive effects of environmental opportunities.

Climate change

(3.6.2.1) Financial metric

Select from:

✓ CAPEX

(3.6.2.2) Amount of financial metric aligned with opportunities for this environmental issue (unit currency as selected in 1.2)

295000000

(3.6.2.3) % of total financial metric aligned with opportunities for this environmental issue

Select from:

✓ 1-10%

(3.6.2.4) Explanation of financial figures

Total capital expenditure for FY24 was R8.327 billion. Total climate-related capital expenditure for FY24 was R295 million. The percentage of total capital expenditure used for climate-related expenditure was 3.54%

Water

(3.6.2.1) Financial metric

Select from:

✓ CAPEX

(3.6.2.2) Amount of financial metric aligned with opportunities for this environmental issue (unit currency as selected in 1.2)

49838499

(3.6.2.3) % of total financial metric aligned with opportunities for this environmental issue

Select from:

✓ Less than 1%

(3.6.2.4) Explanation of financial figures

Total capital expenditure for FY24 was R8.327 billion. Total water-related capital expenditure for FY24 was R49.8 million. The percentage of total capital expenditure used for water-related expenditure was 0.60% [Add row]

C4. Governance

(4.1) Does your organization have a board of directors or an equivalent governing body?

(4.1.1) Board of directors or equivalent governing body

Select from:

Yes

(4.1.2) Frequency with which the board or equivalent meets

Select from:

Quarterly

(4.1.3) Types of directors your board or equivalent is comprised of

Select all that apply

- ☑ Executive directors or equivalent
- ✓ Non-executive directors or equivalent
- ✓ Independent non-executive directors or equivalent

(4.1.4) Board diversity and inclusion policy

Select from:

✓ Yes, and it is publicly available

(4.1.5) Briefly describe what the policy covers

Harmony Gold's diversity and inclusion policy for its board is outlined in the Board Terms of Reference. It requires a balanced composition that covers a wide range of attributes. The policy focuses on promoting diversity in terms of gender, race, culture, age, field of knowledge, skills, and experience. The board is committed to setting targets for race and gender representation, as recommended by the Nomination Committee. This approach ensures the board has the necessary skills, knowledge, and independence to effectively fulfil its governance role and responsibilities, ensuring an inclusive environment that allows varied perspectives and experiences.

(4.1.6) Attach the policy (optional)

board-terms-reference-as-approved-may-2024.pdf [Fixed row]

(4.1.1) Is there board-level oversight of environmental issues within your organization?

Climate change

(4.1.1.1) Board-level oversight of this environmental issue

Select from:

✓ Yes

Water

(4.1.1.1) Board-level oversight of this environmental issue

Select from:

Yes

Biodiversity

(4.1.1.1) Board-level oversight of this environmental issue

Select from:

✓ No, but we plan to within the next two years

(4.1.1.2) Primary reason for no board-level oversight of this environmental issue

Select from:

☑ Other, please specify :Evaluation in progress

(4.1.1.3) Explain why your organization does not have board-level oversight of this environmental issue

Harmony acknowledges the impact mining has on the environment, which includes on biodiversity. Harmony complies with all biodiversity laws and regulations in operating jurisdictions. Harmony is currently in the process, with the Endangered Wildlife Trust, to develop its biodiversity footprint. In FY24 the baseline data was compiled. Harmony is still in the complete evaluation process and will publish this information in the public domain once the work has been complete and signed off. [Fixed row]

(4.1.2) Identify the positions (do not include any names) of the individuals or committees on the board with accountability for environmental issues and provide details of the board's oversight of environmental issues.

Climate change

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

- ☑ Chief Executive Officer (CEO)
- ☑ Chief Sustainability Officer (CSO)
- ✓ Other C-Suite Officer
- ▼ Board-level committee

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

Yes

(4.1.2.3) Policies which outline the positions' accountability for this environmental issue

Select all that apply

☑ Other policy applicable to the board, please specify :Environmental Policy and Water Strategy

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

☑ Scheduled agenda item in every board meeting (standing agenda item)

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

Select all that apply

- ☑ Reviewing and guiding annual budgets
- ✓ Overseeing the setting of corporate targets
- ☑ Monitoring progress towards corporate targets
- ☑ Reviewing and guiding innovation/R&D priorities
- ☑ Approving and/or overseeing employee incentives
- ✓ Monitoring compliance with corporate policies and/or commitments
- ✓ Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities

- ✓ Overseeing and guiding major capital expenditures
- ✓ Monitoring the implementation of the business strategy
- ✓ Overseeing reporting, audit, and verification processes
- ✓ Overseeing and guiding the development of a business strategy
- ✓ Overseeing and guiding acquisitions, mergers, and divestitures

(4.1.2.7) Please explain

The board of directors and CEO retain ultimate accountability for environmental and climate-related issues, with oversight exercised through its established governance structures. The social and ethics committee plays a central role in monitoring and guiding the company's sustainable development framework, which encompasses climate change, energy, water stewardship, biodiversity, and social license to operate. This committee is mandated to oversee the company's performance against ESG commitments and regulatory requirements, including the Mining Charter, environmental compliance, and stakeholder engagement on sustainability matters. The Chief Sustainability Officer (CSO) is responsible for driving the implementation of sustainability strategy across operations, coordinating climate and environmental initiatives, and delivering consistency with stakeholder expectations, regulatory obligations, and international best practice. The audit and risk committee supports the board by overseeing risk management processes, including the integration of climate-related and water risks into Harmony's enterprise risk management system, requiring robust internal controls and transparent disclosure. In this regard, the Chief Corporate Officer (CCO) includes the responsibilities of a Chief Risk Officer (CRO) such as responsibility for enterprise risk management, compliance, legal, combined assurance and investor relations. The CCO provides dedicated leadership in embedding environmental and climate risks within Harmony's broader risk framework and ensuring alignment with corporate resilience objectives. The remuneration committee aligns executive remuneration with performance on ESG and safety targets, thereby reinforcing accountability for climate and environmental outcomes.

Water

(4.1.2.1) Positions of individuals or committees with accountability for this environmental issue

Select all that apply

- ✓ Chief Executive Officer (CEO)
- ☑ Chief Sustainability Officer (CSO)
- ✓ Other C-Suite Officer
- ☑ Board-level committee

(4.1.2.2) Positions' accountability for this environmental issue is outlined in policies applicable to the board

Select from:

Yes

(4.1.2.3) Policies which outline the positions' accountability for this environmental issue

Select all that apply

✓ Other policy applicable to the board, please specify :Environmental Policy and Water Strategy

(4.1.2.4) Frequency with which this environmental issue is a scheduled agenda item

Select from:

☑ Scheduled agenda item in every board meeting (standing agenda item)

(4.1.2.5) Governance mechanisms into which this environmental issue is integrated

Select all that apply

☑ Reviewing and guiding annual budgets

✓ Overseeing the setting of corporate targets

✓ Monitoring progress towards corporate targets

☑ Reviewing and guiding innovation/R&D priorities

☑ Approving and/or overseeing employee incentives

✓ Monitoring compliance with corporate policies and/or commitments

✓ Overseeing and guiding major capital expenditures

✓ Monitoring the implementation of the business strategy

✓ Overseeing reporting, audit, and verification processes

✓ Overseeing and guiding the development of a business strategy

✓ Overseeing and guiding acquisitions, mergers, and divestitures

☑ Reviewing and guiding the assessment process for dependencies, impacts, risks, and opportunities

(4.1.2.7) Please explain

Harmony Gold's governance mechanisms are integral to overseeing and managing environmental issues, particularly water management. The CEO, supported by the board's Social and Ethics Committee (SEC), SD Committee and Audit and Risk Committee, and the Executive: Sustainable Development, is responsible for integrating water management into the company's governance framework. This structure ensures that water-related initiatives are strategically aligned with the company's sustainability objectives and are effectively monitored and executed. The SEC sets water-related targets that align with Harmony's broader sustainability goals. These targets, designed to be both ambitious and achievable, provide clear direction for the company's water conservation efforts. For example, the committee has set a target to reduce potable water consumption by 10% and increase water recycling by 50% by FY27. The CEO is responsible for operationalizing these targets supported by the Executive: Sustainable Development. Monitoring progress towards these targets involves regular reports from the Executive: Sustainable Development to the CEO. This ensures the CEO remains update to date on water usage, recycling rates, and progress towards the set targets. Specific agenda items, such as water management and progress against water targets, are reviewed quarterly to ensure continuous oversight and timely interventions when

necessary. For instance, in FY23, the board reviewed the success of initiatives that resulted in a 5% reduction in potable water usage from FY22 and a 13% increase in the volume of recycled water. The CEO is also responsible for approving and overseeing employee incentives related to water management goals, ensuring alignment with the company's sustainability objectives. Additionally, the CEO and SEC review and guide annual budgets and oversees major capital expenditures such as water treatment plants. For example, the approval and implementation of WASH projects in Papua New Guinea in FY23 resulted in water supply to 450 residences and school students. Harmony's water strategy is deeply integrated into its governance structures, with the CEO holding ultimate responsibility for its implementation. This includes ensuring that water management practices are aligned with the overall business strategy, involving regular briefings to the board on water-related risks and opportunities. Water management is also incorporated into risk assessments, investment decisions, and operational planning, such as approving capital expenditures for water treatment plants and stormwater control upgrades. When considering trade-offs associated with water management initiatives, the board, guided and informed by the CEO, carefully evaluates both the costs and benefits. For example, the decision to invest in water treatment plants considered the initial capital expenditure against the long-term benefits of reduced operating costs and greater water security.

[Fixed row]

(4.2) Does your organization's board have competency on environmental issues?

Climate change

(4.2.1) Board-level competency on this environmental issue

Select from:

✓ Yes

(4.2.2) Mechanisms to maintain an environmentally competent board

Select all that apply

- ☑ Consulting regularly with an internal, permanent, subject-expert working group
- ☑ Engaging regularly with external stakeholders and experts on environmental issues
- ✓ Integrating knowledge of environmental issues into board nominating process
- ☑ Regular training for directors on environmental issues, industry best practice, and standards (e.g., TCFD, SBTi)
- ☑ Having at least one board member with expertise on this environmental issue

(4.2.3) Environmental expertise of the board member

Experience

☑ Experience in an organization that is exposed to environmental-scrutiny and is going through a sustainability transition

☑ Active member of an environmental committee or organization

Water

(4.2.1) Board-level competency on this environmental issue

Select from:

Yes

(4.2.2) Mechanisms to maintain an environmentally competent board

Select all that apply

- ✓ Consulting regularly with an internal, permanent, subject-expert working group
- ☑ Engaging regularly with external stakeholders and experts on environmental issues
- ✓ Integrating knowledge of environmental issues into board nominating process
- ☑ Regular training for directors on environmental issues, industry best practice, and standards (e.g., TCFD, SBTi)
- ☑ Having at least one board member with expertise on this environmental issue

(4.2.3) Environmental expertise of the board member

Experience

- ☑ Experience in an organization that is exposed to environmental-scrutiny and is going through a sustainability transition
- ✓ Active member of an environmental committee or organization

[Fixed row]

(4.3) Is there management-level responsibility for environmental issues within your organization?

	Management-level responsibility for this environmental issue
Climate change	Select from: ✓ Yes
Water	Select from: ✓ Yes

[Fixed row]

(4.3.1) Provide the highest senior management-level positions or committees with responsibility for environmental issues (do not include the names of individuals).

Climate change

(4.3.1.1) Position of individual or committee with responsibility

Executive level

✓ Chief Executive Officer (CEO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ✓ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Engagement

☑ Managing engagement in landscapes and/or jurisdictions

Policies, commitments, and targets

- ✓ Monitoring compliance with corporate environmental policies and/or commitments
- ☑ Measuring progress towards environmental corporate targets

Strategy and financial planning

- ☑ Managing acquisitions, mergers, and divestitures related to environmental issues
- ☑ Managing major capital and/or operational expenditures relating to environmental issues

Other

☑ Other, please specify: The Sustainable Development Committee members' bonuses are linked to climate-related KPIs

(4.3.1.4) Reporting line

Select from:

✓ Reports to the board directly

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

Quarterly

(4.3.1.6) Please explain

Harmony Gold's governance framework integrates climate change oversight at the highest level. The board of directors is ultimately accountable for responsible corporate citizenship, with the CEO serving as the link between the board and management. The CEO ensures that board-endorsed strategies are implemented in line with Harmony's vision, safeguarding the company's reputation while addressing climate risks and opportunities. Quarterly updates are provided to the board on progress against climate targets, regulatory compliance, and emissions reduction initiatives. The SEC and Audit and Risk Committee support the board by monitoring ESG performance, embedding climate risk into enterprise risk management, and promoting transparent disclosure. The CEO is accountable for management decisions and oversees the execution of both short- and long-term climate strategies, including Harmony's commitment to achieve net zero carbon emissions by 2045. This involves overseeing renewable energy investments, resource efficiency measures, and adaptation initiatives to strengthen climate resilience. The CEO reports quarterly to the board on climate issues, including GHG emissions, energy efficiency projects, and decarbonisation progress. All major capital expenditure is subject to CEO oversight, ensuring investments align with climate priorities and long-term resilience. The CEO also engages externally with government leaders, regulators, and industry peers to address climate-related challenges and policy developments. Through this integrated structure, climate change is embedded into Harmony's risk assessments, investment decisions, and operational planning, with the CEO holding ultimate responsibility for delivery.

Water

(4.3.1.1) Position of individual or committee with responsibility

Executive level

☑ Chief Executive Officer (CEO)

(4.3.1.2) Environmental responsibilities of this position

Dependencies, impacts, risks and opportunities

- ✓ Assessing environmental dependencies, impacts, risks, and opportunities
- ☑ Managing environmental dependencies, impacts, risks, and opportunities

Engagement

☑ Managing engagement in landscapes and/or jurisdictions

Policies, commitments, and targets

- ☑ Monitoring compliance with corporate environmental policies and/or commitments
- ☑ Measuring progress towards environmental corporate targets

Strategy and financial planning

- ☑ Managing acquisitions, mergers, and divestitures related to environmental issues
- ☑ Managing major capital and/or operational expenditures relating to environmental issues

Other

✓ Other, please specify: The Sustainable Development Committee members' bonuses are linked to water-related KPIs.

(4.3.1.4) Reporting line

Select from:

☑ Reports to the board directly

(4.3.1.5) Frequency of reporting to the board on environmental issues

Select from:

Quarterly

(4.3.1.6) Please explain

Organisational structure: Harmony's board of directors provides oversight of responsible corporate citizenship, with the CEO, appointed by the board, serving as the critical link between board and management. The CEO ensures that strategies endorsed by the board are implemented in line with Harmony's vision, safeguarding the company's reputation and addressing climate change, water management, and broader sustainability priorities. Quarterly updates are provided to the board on operational performance, progress against targets, regulatory compliance, and environmental actions. Controls and procedures: The CEO holds accountability for management decisions and is responsible for executing both short- and long-term plans. Environmental dependencies, impacts, risks, and opportunities, including those related to water use, emissions reduction, and resource efficiency, are integral to the CEO's mandate. The CEO reports quarterly to the board on water-related issues and oversees all major capital expenditure, ensuring investments are evaluated against sustainability objectives. The CEO is also directly involved in Harmony's risk assessment processes, embedding environmental considerations into enterprise risk management. Beyond internal governance, the CEO engages with provincial premiers and other authorities in jurisdictions where Harmony operates, addressing operational challenges such as water availability and security. Through this integrated role, the CEO ensures that environmental stewardship is central to Harmony's corporate strategy and operational execution. [Add row]

(4.5) Do you provide monetary incentives for the management of environmental issues, including the attainment of targets?

Climate change

(4.5.1) Provision of monetary incentives related to this environmental issue

Select from:

Yes

(4.5.2) % of total C-suite and board-level monetary incentives linked to the management of this environmental issue

5

(4.5.3) Please explain

These incentives at the board level provide for enhanced accountability and improved performance. Five percent of the total monetary incentives package relate to environmental issues.

Water

(4.5.1) Provision of monetary incentives related to this environmental issue

Select from:

Yes

(4.5.2) % of total C-suite and board-level monetary incentives linked to the management of this environmental issue

5

(4.5.3) Please explain

These incentives at the board level provide for enhanced accountability and improved performance. Five percent of the total monetary incentives package relate to environmental issues.

[Fixed row]

(4.5.1) Provide further details on the monetary incentives provided for the management of environmental issues (do not include the names of individuals).

Climate change

(4.5.1.1) Position entitled to monetary incentive

Board or executive level

☑ Chief Executive Officer (CEO)

(4.5.1.2) Incentives

Select all that apply

- ✓ Bonus set figure
- ✓ Shares

(4.5.1.3) Performance metrics

Targets

✓ Organization performance against an environmental sustainability index

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Both Short-Term and Long-Term Incentive Plan, or equivalent

(4.5.1.5) Further details of incentives

The CEO's remuneration policy is designed to balance fixed and variable components, ensuring alignment with Harmony's long-term strategic priorities, including financial performance, operational excellence, and sustainability objectives such as climate change, water stewardship, biodiversity, and forest management. Total remuneration comprises a guaranteed pay and variable incentives. Variable incentives are performance-based, with short-term incentives (STIs) determined annually and long-term incentives (LTIs) assessed over a multi-year period. The total incentive is calculated using the formula: Total Incentive (R) = Guaranteed Pay (R) × Ontarget Factor (%) × Balanced Scorecard Result (%). At a company-wide level, the incentive structure applies consistently across regions, sectors, and operations. For FY24, the CEO's on-target factor was set at 100% of guaranteed pay, with final outcomes determined by the balanced scorecard. This scorecard includes a range of performance measures reviewed annually, incorporating environmental indicators such as water efficiency, climate risk mitigation, emissions reduction, biodiversity protection, and sustainable land and forest management. For FY24, the STI could reach up to 120% of guaranteed pay, while the LTI could extend to 180% if stretch performance targets were achieved. The incentive payout is split between immediate cash and deferred equity, ensuring both short-term accountability and long-term alignment with shareholder value. Specifically, 40% of the CEO's annual incentive is paid in cash following approval of scorecard results, while 60% is delivered in deferred shares that vest in equal tranches of 20% per year over five years. This structure reinforces continuity, accountability, and commitment to Harmony's sustainability transition.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

Performance indicators related to greenhouse gas emissions reduction and energy efficiency are directly linked to Harmony's climate commitments, including our net-zero target by 2045. Incentives are an important driver in achieving these commitments. Within the CEO's balanced scorecard, ESG factors carry a 5% weighting, reflecting the importance of climate-related performance. This ensures that emissions reduction, energy efficiency, and renewable energy adoption remain central to our business strategy. The team-based balanced scorecard framework extends this accountability across management, with annual evaluations against climate-related key performance indicators. These include implementing energy efficiency projects, expanding our renewable energy capacity, reducing Scope 1 and 2 emissions. By aligning incentives with these indicators, we motivate and reward employees for their contributions to climate action. Harmony's targets include reducing energy intensity, expanding renewable energy supply to 30% by 2030, and achieving progressive emissions reduction milestones toward net zero by 2045. This approach ensures accountability while embedding climate resilience into operational and strategic decision-making.

Water

(4.5.1.1) Position entitled to monetary incentive

Board or executive level

☑ Chief Executive Officer (CEO)

(4.5.1.2) Incentives

Select all that apply

- ✓ Bonus set figure
- ✓ Shares

(4.5.1.3) Performance metrics

Resource use and efficiency

- ☑ Reduction of water withdrawals direct operations
- ☑ Reduction in water consumption volumes direct operations
- ✓ Improvements in water efficiency upstream value chain (excluding direct operations)

Pollution

- ✓ Improvements in wastewater quality direct operations
- ✓ Improvements in wastewater quality downstream value chain (excluding direct operations)

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Both Short-Term and Long-Term Incentive Plan, or equivalent

(4.5.1.5) Further details of incentives

The CEO's remuneration policy is designed to balance fixed and variable components, ensuring alignment with Harmony's long-term strategic priorities, including financial performance, operational excellence, and sustainability objectives such as climate change, water stewardship, biodiversity, and forest management. Total

remuneration comprises a guaranteed pay and variable incentives. Variable incentives are performance-based, with STIs determined annually and LTIs assessed over a multi-year period. The total incentive is calculated using the formula: Total Incentive (R) = Guaranteed Pay (R) × On-target Factor (%) × Balanced Scorecard Result (%). At a company-wide level, the incentive structure applies consistently across regions, sectors, and operations. For FY24, the CEO's on-target factor was set at 100% of guaranteed pay, with final outcomes determined by the balanced scorecard. This scorecard includes a range of performance measures reviewed annually, incorporating environmental indicators such as water efficiency, climate risk mitigation, emissions reduction, biodiversity protection, and sustainable land and forest management. For FY24, the STI could reach up to 120% of guaranteed pay, while the LTI could extend to 180% if stretch performance targets were achieved. The incentive payout is split between immediate cash and deferred equity, ensuring both short-term accountability and long-term alignment with shareholder value. Specifically, 40% of the CEO's annual incentive is paid in cash following approval of scorecard results, while 60% is delivered in deferred shares that vest in equal tranches of 20% per year over five years. This structure reinforces continuity, accountability, and commitment to Harmony's sustainability transition

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

The performance indicators related to reduction in water consumption volumes and improvements in water efficiency at our direct operations are linked to progress on Harmony's water commitments, for example our targets to reduce consumption of potable water. The contribution of incentives to the achievement of our organization's water commitments is significant. In our incentive framework, we allocate a 5% weighting for ESG factors on the CEO's balanced scorecard, emphasizing the importance of water-related goals and targets. This ensures that water conservation, efficiency, and sustainability are prioritized. Our team-based balanced scorecard approach evaluates management employees annually against set key performance indicators, including water-related metrics. By aligning incentives with these indicators, we motivate and reward individuals for their contributions to water management and conservation efforts. Our targets include an intensity target of 10% kl/ tonne water treated by 2027. In addition, our water recycling target is 50% by 2027. We aim to continually improve our water management practices, reduce water consumption, and enhance water recycling efforts.

Water

(4.5.1.1) Position entitled to monetary incentive

Board or executive level

✓ Chief Operating Officer (COO)

(4.5.1.2) Incentives

Select all that apply

✓ Bonus – set figure

✓ Shares

(4.5.1.3) Performance metrics

Resource use and efficiency

- ☑ Reduction of water withdrawals direct operations
- ☑ Reduction in water consumption volumes direct operations
- ✓ Improvements in water efficiency upstream value chain (excluding direct operations)

Pollution

- ✓ Improvements in wastewater quality direct operations
- ✓ Improvements in wastewater quality downstream value chain (excluding direct operations)

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Both Short-Term and Long-Term Incentive Plan, or equivalent

(4.5.1.5) Further details of incentives

The COO's remuneration policy is designed to balance fixed and variable components, ensuring alignment with Harmony's long-term strategic priorities, including financial performance, operational excellence, and sustainability objectives such as climate change, water stewardship, biodiversity, and forest management. Total remuneration comprises a guaranteed pay and variable incentives. Variable incentives are performance-based, with STIs determined annually and LTIs assessed over a multi-year period. The total incentive is calculated using the formula: Total Incentive (R) = Guaranteed Pay (R) × On-target Factor (%) × Balanced Scorecard Result (%). At a company-wide level, the incentive structure applies consistently across regions, sectors, and operations. For FY24, the COO's on-target factor was set at 100% of guaranteed pay, with final outcomes determined by the balanced scorecard. This scorecard includes a range of performance measures reviewed annually, incorporating environmental indicators such as water efficiency, climate risk mitigation, emissions reduction, biodiversity protection, and sustainable land and forest management. For FY24, the STI could reach up to 100% of guaranteed pay, while the LTI could extend to 150% if stretch performance targets were achieved. The incentive payout is split between immediate cash and deferred equity, ensuring both short-term accountability and long-term alignment with shareholder value. Specifically, 40% of the COO's annual incentive is paid in cash following approval of scorecard results, while 60% is delivered in deferred shares that vest in equal tranches of 20% per year over five years. This structure reinforces continuity, accountability, and commitment to Harmony's sustainability transition.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

The performance indicators related to reduction in water consumption volumes and improvements in water efficiency at our direct operations are linked to progress on Harmony's water commitments, for example our targets to reduce consumption of potable water. The contribution of incentives to the achievement of our

organization's water commitments is significant. In our incentive framework, we allocate a 5% weighting for ESG factors on the COO's balanced scorecard, emphasizing the importance of water-related goals and targets. This ensures that water conservation, efficiency, and sustainability are prioritized. Our team-based balanced scorecard approach evaluates management employees annually against set key performance indicators, including water-related metrics. By aligning incentives with these indicators, we motivate and reward individuals for their contributions to water management and conservation efforts. Our targets include an intensity target of 10% kl/ tonne water treated by 2027. In addition, our water recycling target is 50% by 2027. We aim to continually improve our water management practices, reduce water consumption, and enhance water recycling efforts.

Water

(4.5.1.1) Position entitled to monetary incentive

Facility/Unit/Site management

☑ Site manager

(4.5.1.2) Incentives

Select all that apply

✓ Bonus – set figure

Shares

(4.5.1.3) Performance metrics

Resource use and efficiency

- ☑ Reduction of water withdrawals direct operations
- ☑ Reduction in water consumption volumes direct operations
- ✓ Improvements in water efficiency upstream value chain (excluding direct operations)

Pollution

- ✓ Improvements in wastewater quality direct operations
- ✓ Improvements in wastewater quality downstream value chain (excluding direct operations)

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Both Short-Term and Long-Term Incentive Plan, or equivalent

(4.5.1.5) Further details of incentives

The remuneration policy for the General Manager (Site manager) is structured around a combination of fixed and variable components to ensure the manager's interests align with the company's strategic objectives. The total remuneration consists of a guaranteed pay and variable incentives. The variable incentives are performance-based with the short-term incentive determined annually, while the long-term incentive is based on a multi-year performance period. The total incentive is calculated using the formula: Total Incentive (R) = Guaranteed Pay (R) X On-target Factor (%) X Balanced Scorecard Result (%) The incentive is set at a company-wide level, that spans regions, sectors and operations. The total incentive is divided into a cash portion and deferred shares. For the general manager, 40% of the incentive is paid in cash immediately after the annual balanced scorecard results are approved. The remaining 60% is settled in deferred shares, which vest over three years at a rate of 33% per annum. This structure ensures long-term alignment with the company's performance and shareholder interests. The balanced scorecard encompasses key performance indicators, including financial and operational metrics, sustainability measures like safety performance and ESG criteria. These measures are weighted and reviewed to ensure they motivate the desired company performance and strategic outcomes.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

The performance indicators related to reduction in water consumption volumes and improvements in water efficiency at our direct operations are linked to progress on Harmony's water commitments, for example our targets to reduce consumption of potable water. The contribution of incentives to the achievement of our organization's water commitments is significant. In our incentive framework, we allocate a 5% weighting for ESG factors on the balanced scorecard of the General Manager (Site manager), emphasizing the importance of water-related goals and targets. This ensures that water conservation, efficiency, and sustainability are prioritized. Our team-based balanced scorecard approach evaluates management employees annually against set key performance indicators, including water-related metrics. By aligning incentives with these indicators, we motivate and reward individuals for their contributions to water management and conservation efforts. Our targets include an intensity target of 10% kl/ tonne water treated by 2027. In addition, our water recycling target is 50% by 2027. We aim to continually improve our water management practices, reduce water consumption, and enhance water recycling efforts.

Water

(4.5.1.1) Position entitled to monetary incentive

Board or executive level

☑ Chief Sustainability Officer (CSO)

(4.5.1.2) Incentives

Select all that apply

- ✓ Bonus set figure
- ✓ Shares

(4.5.1.3) Performance metrics

Resource use and efficiency

- ✓ Reduction of water withdrawals direct operations
- ✓ Reduction in water consumption volumes direct operations
- ✓ Improvements in water efficiency upstream value chain (excluding direct operations)

Pollution

- ✓ Improvements in wastewater quality direct operations
- ✓ Improvements in wastewater quality downstream value chain (excluding direct operations)

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Both Short-Term and Long-Term Incentive Plan, or equivalent

(4.5.1.5) Further details of incentives

The CSO's remuneration policy is designed to balance fixed and variable components, ensuring alignment with Harmony's long-term strategic priorities, including financial performance, operational excellence, and sustainability objectives such as climate change, water stewardship, biodiversity, and forest management. Total remuneration comprises a guaranteed pay and variable incentives. Variable incentives are performance-based, with STIs determined annually and LTIs assessed over a multi-year period. The total incentive is calculated using the formula: Total Incentive (R) = Guaranteed Pay (R) × On-target Factor (%) × Balanced Scorecard Result (%). At a company-wide level, the incentive structure applies consistently across regions, sectors, and operations. For FY24, the CSO's on-target factor was set at 100% of guaranteed pay, with final outcomes determined by the balanced scorecard. This scorecard includes a range of performance measures reviewed annually, incorporating environmental indicators such as water efficiency, climate risk mitigation, emissions reduction, biodiversity protection, and sustainable land and forest management. For FY24, the STI could reach up to 100% of guaranteed pay, while the LTI could extend to 150% if stretch performance targets were achieved. The incentive payout is split between immediate cash and deferred equity, ensuring both short-term accountability and long-term alignment with shareholder value. Specifically, 40% of the CSO's annual incentive is paid in cash following approval of scorecard results, while 60% is delivered in deferred shares that vest in equal tranches of 20% per year over five years. This structure reinforces continuity, accountability, and commitment to Harmony's sustainability transition.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

The performance indicators related to reduction in water consumption volumes and improvements in water efficiency at our direct operations are linked to progress on Harmony's water commitments, for example our targets to reduce consumption of potable water. The contribution of incentives to the achievement of our organization's water commitments is significant. In our incentive framework, we allocate a 5% weighting for ESG factors on the balanced scorecard, emphasizing the importance of water-related goals and targets. This ensures that water conservation, efficiency, and sustainability are prioritized. Our team-based balanced scorecard approach evaluates management employees annually against set key performance indicators, including water-related metrics. By aligning incentives with these indicators, we motivate and reward individuals for their contributions to water management and conservation efforts. Our targets include an intensity target of 10% kl/ tonne water treated by 2027. In addition, our water recycling target is 50% by 2027. We aim to continually improve our water management practices, reduce water consumption, and enhance water recycling efforts.

Climate change

(4.5.1.1) Position entitled to monetary incentive

Board or executive level

✓ Chief Operating Officer (COO)

(4.5.1.2) Incentives

Select all that apply

✓ Bonus – set figure

Shares

(4.5.1.3) Performance metrics

Targets

✓ Organization performance against an environmental sustainability index

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

(4.5.1.5) Further details of incentives

The COO's remuneration policy is designed to balance fixed and variable components, ensuring alignment with Harmony's long-term strategic priorities, including financial performance, operational excellence, and sustainability objectives such as climate change, water stewardship, biodiversity, and forest management. Total remuneration comprises a guaranteed pay and variable incentives. Variable incentives are performance-based, with STIs determined annually and LTIs assessed over a multi-year period. The total incentive is calculated using the formula: Total Incentive (R) = Guaranteed Pay (R) × On-target Factor (%) × Balanced Scorecard Result (%). At a company-wide level, the incentive structure applies consistently across regions, sectors, and operations. For FY24, the COO's on-target factor was set at 100% of guaranteed pay, with final outcomes determined by the balanced scorecard. This scorecard includes a range of performance measures reviewed annually, incorporating environmental indicators such as water efficiency, climate risk mitigation, emissions reduction, biodiversity protection, and sustainable land and forest management. For FY24, the STI could reach up to 100% of guaranteed pay, while the LTI could extend to 150% if stretch performance targets were achieved. The incentive payout is split between immediate cash and deferred equity, ensuring both short-term accountability and long-term alignment with shareholder value. Specifically, 40% of the COO's annual incentive is paid in cash following approval of scorecard results, while 60% is delivered in deferred shares that vest in equal tranches of 20% per year over five years. This structure reinforces continuity, accountability, and commitment to Harmony's sustainability transition.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

Performance indicators related to greenhouse gas emissions reduction and energy efficiency are directly linked to Harmony's climate commitments, including our net-zero target by 2045. Incentives are an important driver in achieving these commitments. Within the COO's balanced scorecard, ESG factors carry a 5% weighting, reflecting the importance of climate-related performance. This ensures that emissions reduction, energy efficiency, and renewable energy adoption remain central to our business strategy. The team-based balanced scorecard framework extends this accountability across management, with annual evaluations against climate-related key performance indicators. These include implementing energy efficiency projects, expanding our renewable energy capacity, reducing Scope 1 and 2 emissions. By aligning incentives with these indicators, we motivate and reward employees for their contributions to climate action. Harmony's targets include reducing energy intensity, expanding renewable energy supply to 30% by 2030, and achieving progressive emissions reduction milestones toward net zero by 2045. This approach ensures accountability while embedding climate resilience into operational and strategic decision-making.

Climate change

(4.5.1.1) Position entitled to monetary incentive

Board or executive level
✓ Chief Sustainability Officer (CSO)

(4.5.1.2) Incentives

Select all that apply

- ✓ Bonus set figure
- ✓ Shares

(4.5.1.3) Performance metrics

Targets

✓ Organization performance against an environmental sustainability index

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Both Short-Term and Long-Term Incentive Plan, or equivalent

(4.5.1.5) Further details of incentives

The CSO's remuneration policy is designed to balance fixed and variable components, ensuring alignment with Harmony's long-term strategic priorities, including financial performance, operational excellence, and sustainability objectives such as climate change, water stewardship, biodiversity, and forest management. Total remuneration comprises a guaranteed pay and variable incentives. Variable incentives are performance-based, with STIs determined annually and LTIs assessed over a multi-year period. The total incentive is calculated using the formula: Total Incentive (R) = Guaranteed Pay (R) × On-target Factor (%) × Balanced Scorecard Result (%). At a company-wide level, the incentive structure applies consistently across regions, sectors, and operations. For FY24, the CSO's on-target factor was set at 100% of guaranteed pay, with final outcomes determined by the balanced scorecard. This scorecard includes a range of performance measures reviewed annually, incorporating environmental indicators such as water efficiency, climate risk mitigation, emissions reduction, biodiversity protection, and sustainable land and forest management. For FY24, the STI could reach up to 100% of guaranteed pay, while the LTI could extend to 150% if stretch performance targets were achieved. The incentive payout is split between immediate cash and deferred equity, ensuring both short-term accountability and long-term alignment with shareholder value. Specifically, 40% of the CSO's annual incentive is paid in cash following approval of scorecard results, while 60% is delivered in deferred shares that vest in equal tranches of 20% per year over five years. This structure reinforces continuity, accountability, and commitment to Harmony's sustainability transition.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

Performance indicators related to greenhouse gas emissions reduction and energy efficiency are directly linked to Harmony's climate commitments, including our net-zero target by 2045. Incentives are an important driver in achieving these commitments. Within the CSO's balanced scorecard, ESG factors carry a 5% weighting, reflecting the importance of climate-related performance. This ensures that emissions reduction, energy efficiency, and renewable energy adoption remain central to our business strategy. The team-based balanced scorecard framework extends this accountability across management, with annual evaluations against climate-related key performance indicators. These include implementing energy efficiency projects, expanding our renewable energy capacity, reducing Scope 1 and 2

emissions. By aligning incentives with these indicators, we motivate and reward employees for their contributions to climate action. Harmony's targets include reducing energy intensity, expanding renewable energy supply to 30% by 2030, and achieving progressive emissions reduction milestones toward net zero by 2045. This approach ensures accountability while embedding climate resilience into operational and strategic decision-making.

Climate change

(4.5.1.1) Position entitled to monetary incentive

Facility/Unit/Site management

✓ Site manager

(4.5.1.2) Incentives

Select all that apply

✓ Bonus – set figure

Shares

(4.5.1.3) Performance metrics

Targets

✓ Organization performance against an environmental sustainability index

(4.5.1.4) Incentive plan the incentives are linked to

Select from:

☑ Both Short-Term and Long-Term Incentive Plan, or equivalent

(4.5.1.5) Further details of incentives

The remuneration policy for the General Manager (Site manager) is structured around a combination of fixed and variable components to ensure the manager's interests align with the company's strategic objectives. The total remuneration consists of a guaranteed pay and variable incentives. The variable incentives are performance-based with the STI determined annually, while the LTI is based on a multi-year performance period. The total incentive is calculated using the formula: Total Incentive (R) Guaranteed Pay (R) X On-target Factor (%) X Balanced Scorecard Result (%) The incentive is set at a company-wide level, that spans regions, sectors and operations. The total incentive is divided into a cash portion and deferred shares. For the general manager, 40% of the incentive is paid in cash

immediately after the annual balanced scorecard results are approved. The remaining 60% is settled in deferred shares, which vest over three years at a rate of 33% per annum. This structure ensures long-term alignment with the company's performance and shareholder interests. The balanced scorecard encompasses key performance indicators, including financial and operational metrics, sustainability measures like safety performance and ESG criteria. These measures are weighted and reviewed to ensure they motivate the desired company performance and strategic outcomes.

(4.5.1.6) How the position's incentives contribute to the achievement of your environmental commitments and/or climate transition plan

The performance indicators related to reduction in water consumption volumes and improvements in water efficiency at our direct operations are linked to progress on Harmony's water commitments, for example our targets to reduce consumption of potable water. The contribution of incentives to the achievement of our organization's water commitments is significant. In our incentive framework, we allocate a 5% weighting for ESG factors on the balanced scorecard of the General Manager (Site manager), emphasizing the importance of water-related goals and targets. This ensures that water conservation, efficiency, and sustainability are prioritized. Our team-based balanced scorecard approach evaluates management employees annually against set key performance indicators, including water-related metrics. By aligning incentives with these indicators, we motivate and reward individuals for their contributions to water management and conservation efforts. Our targets include an intensity target of 10% kl/ tonne water treated by 2027. In addition, our water recycling target is 50% by 2027. We aim to continually improve our water management practices, reduce water consumption, and enhance water recycling efforts.

[Add row]

(4.6) Does your organization have an environmental policy that addresses environmental issues?

Does your organization have any environmental policies?
Select from: ✓ Yes

[Fixed row]

(4.6.1) Provide details of your environmental policies.

Row 1

(4.6.1.1) Environmental issues covered

Select all that apply

- ✓ Climate change
- Water
- ☑ Biodiversity

(4.6.1.2) Level of coverage

Select from:

✓ Organization-wide

(4.6.1.3) Value chain stages covered

Select all that apply

✓ Direct operations

(4.6.1.4) Explain the coverage

The Environmental Management Policy provides comprehensive coverage of the company's key environmental priorities, including climate change, water, energy, biodiversity and waste. The policy commits the company to the efficient and responsible use of natural resources, ensuring that environmental considerations are integrated across all operations. For climate change and energy, the policy supports efforts to reduce greenhouse gas emissions, improve energy efficiency, and transition towards lower-carbon technologies. For water, the policy emphasizes responsible use, improved efficiency, active conservation, and compliance with all regulatory requirements. The policy also guides biodiversity protection, requiring measures to prevent and mitigate harmful effects on ecosystems and to safeguard priority species and habitats in and around operational areas. For waste, Harmony commits to reducing waste generation, improving recycling and reuse, and managing disposal responsibly to minimize environmental harm. Rehabilitation is a cornerstone of the policy, with clear commitments to progressive land rehabilitation, long-term mine closure planning, and restoration of ecosystems to ensure sustainable post-mining land use. Implementation is supported by robust environmental management systems that identify and manage risks, ensure compliance with legislation, and drive continual improvement.

(4.6.1.5) Environmental policy content

Environmental commitments

- ☑ Commitment to a circular economy strategy
- ☑ Commitment to respect legally designated protected areas
- ☑ Commitment to comply with regulations and mandatory standards
- ✓ Commitment to take environmental action beyond regulatory compliance
- ✓ Commitment to avoidance of negative impacts on threatened and protected species

- ✓ Commitment to stakeholder engagement and capacity building on environmental issues
- ☑ Commitment to implementation of nature-based solutions that support landscape restoration and long-term protection of natural ecosystems

Climate-specific commitments

☑ Other climate-related commitment, please specify :Reducing greenhouse gas (GHG) emissions, Transitioning towards renewable energy, improving energy efficiency

Water-specific commitments

- ☑ Commitment to reduce water consumption volumes
- ☑ Commitment to reduce water withdrawal volumes
- ☑ Commitment to control/reduce/eliminate water pollution
- ☑ Commitment to safely managed WASH in local communities
- ☑ Commitment to the conservation of freshwater ecosystems

Social commitments

- ☑ Commitment to promote gender equality and women's empowerment
- ☑ Commitment to respect and protect the customary rights to land, resources, and territory of Indigenous Peoples and Local Communities
- ☑ Commitment to respect internationally recognized human rights

Additional references/Descriptions

- ✓ Acknowledgement of the human right to water and sanitation
- ✓ Description of biodiversity-related performance standards
- ✓ Description of dependencies on natural resources and ecosystems
- ✓ Description of impacts on natural resources and ecosystems
- ☑ Reference to timebound environmental milestones and targets

(4.6.1.6) Indicate whether your environmental policy is in line with global environmental treaties or policy goals

Select all that apply

☑ Yes, in line with Sustainable Development Goal 6 on Clean Water and Sanitation

(4.6.1.7) Public availability

☑ Commitment to water stewardship and/or collective action

Select from:

✓ Publicly available

(4.6.1.8) Attach the policy

Environmental-Policy-November-2022.pdf [Add row]

(4.10) Are you a signatory or member of any environmental collaborative frameworks or initiatives?

(4.10.1) Are you a signatory or member of any environmental collaborative frameworks or initiatives?

Select from:

Yes

(4.10.2) Collaborative framework or initiative

Select all that apply

✓ International Council on Mining and Metals (ICMM)

(4.10.3) Describe your organization's role within each framework or initiative

Harmony Gold aligns its environmental practices with ICMM water stewardship framework, even though it is not a direct ICMM member. Through its active membership in the Minerals Council South Africa (an ICMM member), Harmony aligns with ICMM guidelines across its operations and with the Australian National Committee on Large Dams (ANCOLD) guidance in the Australasian region. These guidelines underpin responsible mining and cover critical aspects such as water stewardship, climate action, biodiversity protection, energy use, waste management, and land rehabilitation. Harmony's alignment with ICMM best practices assisting with its operations to mitigate environmental impacts while safeguarding social and economic value creation for host communities. Harmony also plays an active role within the Minerals Council's Environmental Policy Committee, contributing to the development and promotion of industry-wide environmental standards. This participation enables the company to stay at the forefront of best practice, influence collective action, and integrate environmental stewardship into operational and strategic decision-making. Beyond ICMM alignment, Harmony has embedded broader sustainability commitments through its support of the UN Global Compact and the SDGs. The company directly advances SDGs 3 (health and wellbeing), 5 (gender equality), 6 (clean water and sanitation), 7 (affordable and clean energy), 8 (decent work and economic growth), 12 (responsible consumption and production), 13 (climate action), and 15 (life on land), while contributing indirectly to SDGs 1, 2, 4, 9, 10 and 16. Harmony also collaborates on partnerships aligned to SDG 17, reinforcing its commitment to sustainable development and responsible mining. [Fixed row]

(4.11) In the reporting year, did your organization engage in activities that could directly or indirectly influence policy, law, or regulation that may (positively or negatively) impact the environment?

(4.11.1) External engagement activities that could directly or indirectly influence policy, law, or regulation that may impact the environment

Select all that apply

- ✓ Yes, we engaged directly with policy makers
- ✓ Yes, we engaged indirectly through, and/or provided financial or in-kind support to a trade association or other intermediary organization or individual whose activities could influence policy, law, or regulation

(4.11.2) Indicate whether your organization has a public commitment or position statement to conduct your engagement activities in line with global environmental treaties or policy goals

Select from:

☑ Yes, we have a public commitment or position statement in line with global environmental treaties or policy goals

(4.11.3) Global environmental treaties or policy goals in line with public commitment or position statement

Select all that apply

- Paris Agreement
- ☑ Sustainable Development Goal 6 on Clean Water and Sanitation

(4.11.4) Attach commitment or position statement

HAR-Sustainable-Development-Framework-approved-12-August-2022.pdf

(4.11.5) Indicate whether your organization is registered on a transparency register

Select from:

✓ No

(4.11.8) Describe the process your organization has in place to ensure that your external engagement activities are consistent with your environmental commitments and/or transition plan

Harmony Gold implements structured processes for stakeholder engagement, relationship management, and policy alignment, recognizing that strong relationships are fundamental to delivering its strategy and maintaining its social license to operate. Engagement spans employees, unions, communities, first nations groups, government, and suppliers, enabling Harmony to identify stakeholder needs and align activities accordingly. Since FY22, the Stakeholder Relations Committee has provided oversight, guiding the implementation of a cohesive communication and engagement strategy across operations. This ensures consistent, transparent, and proactive engagement while also managing risks at Board level. Harmony's approach is aligned with the AA1000 Stakeholder Engagement Standard and governed by its publicly available Stakeholder Engagement Policy. These processes are directly linked to the company's environmental policy and water stewardship strategy, ensuring that environmental and social considerations are embedded in decision-making. Where inconsistencies arise, Harmony engages with operational teams to review mitigation measures, ensuring accountability and continual improvement.

[Fixed row]

(4.11.1) On what policies, laws, or regulations that may (positively or negatively) impact the environment has your organization been engaging directly with policy makers in the reporting year?

Row 1

(4.11.1.1) Specify the policy, law, or regulation on which your organization is engaging with policy makers

National Water Act

(4.11.1.2) Environmental issues the policy, law, or regulation relates to

Select all that apply

Water

(4.11.1.3) Focus area of policy, law, or regulation that may impact the environment

Financial mechanisms (e.g., taxes, subsidies, etc.)

☑ Fines, enforcement orders and/or penalties relating to groundwater contamination

(4.11.1.4) Geographic coverage of policy, law, or regulation

Select from:

National

(4.11.1.5) Country/area/region the policy, law, or regulation applies to

Select all that apply

South Africa

(4.11.1.6) Your organization's position on the policy, law, or regulation

Select from:

Neutral

(4.11.1.8) Type of direct engagement with policy makers on this policy, law, or regulation

Select all that apply

- ☑ Ad-hoc meetings
- ✓ Participation in working groups organized by policy makers
- Responding to consultations

(4.11.1.9) Funding figure your organization provided to policy makers in the reporting year relevant to this policy, law, or regulation (currency)

0

(4.11.1.10) Explain the relevance of this policy, law, or regulation to the achievement of your environmental commitments and/or transition plan, how this has informed your engagement, and how you measure the success of your engagement

Harmony Gold's operations in South Africa are significantly impacted by the National Water Act (NWA), which mandates that any water use must be authorized through a water use license issued by the Department of Water and Sanitation. Our compliance with the NWA ensures sustainable water resource management and adherence to best practices in water quality standards. This regulatory framework supports Harmony's public commitments to sustainability and its plans towards more efficient water use. The engagement with the DWS is critical, especially for operations in water-stressed regions such as the Free State and North West provinces. Harmony's strategy includes working collaboratively with regional departments and catchment management agencies to develop sustainable water management practices. This collaboration aims to secure water supply, reduce dependency on external water sources and mitigate the environmental impacts of mining activities. The positive impacts of complying with the NWA include enhanced water security and improved relationships with local communities and regulatory

bodies. However, there are potential negative impacts, such as significant costs associated with implementing alternative water management measures required to meet new water use license conditions. Harmony addresses these challenges through continuous engagement with policymakers to influence the development of realistic and achievable regulations. The main indicator for successful engagements is the continued compliance with the provisions of our water use licenses.

(4.11.1.11) Indicate if you have evaluated whether your organization's engagement on this policy, law, or regulation is aligned with global environmental treaties or policy goals

Select from:

✓ Yes, we have evaluated, and it is aligned

(4.11.1.12) Global environmental treaties or policy goals aligned with your organization's engagement on this policy, law or regulation

Select all that apply

☑ Sustainable Development Goal 6 on Clean Water and Sanitation

Row 2

(4.11.1.1) Specify the policy, law, or regulation on which your organization is engaging with policy makers

South Africa's Just Energy Transition framework

(4.11.1.2) Environmental issues the policy, law, or regulation relates to

Select all that apply

✓ Climate change

(4.11.1.3) Focus area of policy, law, or regulation that may impact the environment

Other

✓ Climate transition plans

(4.11.1.4) Geographic coverage of policy, law, or regulation

Select from:

National

(4.11.1.5) Country/area/region the policy, law, or regulation applies to

Select all that apply

South Africa

(4.11.1.6) Your organization's position on the policy, law, or regulation

Select from:

Neutral

(4.11.1.8) Type of direct engagement with policy makers on this policy, law, or regulation

Select all that apply

- ☑ Ad-hoc meetings
- ✓ Participation in working groups organized by policy makers
- Responding to consultations

(4.11.1.9) Funding figure your organization provided to policy makers in the reporting year relevant to this policy, law, or regulation (currency)

0

(4.11.1.10) Explain the relevance of this policy, law, or regulation to the achievement of your environmental commitments and/or transition plan, how this has informed your engagement, and how you measure the success of your engagement

South Africa's Just Energy Transition (JET) framework is highly relevant to the achievement of Harmony's environmental commitments and transition plan as it provides the national policy context for decarbonising the energy system while addressing socio-economic realities. Harmony operates in an energy-intensive and emissions-exposed sector, where reliable, low-carbon power is essential for operational continuity, cost management, and long-term competitiveness. The JET framework directly informs Harmony's climate strategy by linking national decarbonisation targets with an approach that prioritises workforce protection, community resilience, and inclusive growth. This framework has guided our engagement at multiple levels. With government and regulators, we participates in platforms coordinated by the Minerals Council South Africa and the Energy Intensive Users Group to advocate for policies that enable renewable energy procurement, grid access, and carbon pricing mechanisms that are fair and predictable. Engagement with Eskom and independent power producers is shaped by the JET priority of

diversifying the energy mix and enabling private-sector investment in renewable projects. With host communities and labour unions, we use the JET principles to frame discussions on job creation, skills development, and alternative livelihoods, ensuring that decarbonisation initiatives, such as embedded solar projects and rehabilitation activities, deliver tangible social value alongside emissions reduction. The success of Harmony's engagement is measured through several indicators. Key metrics include the reduction of Scope 1 and 2 emissions intensity, progress in securing renewable energy supply agreements, and alignment of climate targets with South Africa's NDC. Social outcomes are monitored through local procurement spend, training and reskilling initiatives, and community development projects linked to clean energy and rehabilitation. Effectiveness is also tracked through external ESG ratings, feedback from stakeholders, and the integration of just transition objectives into our broader environmental, social, and governance performance framework.

(4.11.1.11) Indicate if you have evaluated whether your organization's engagement on this policy, law, or regulation is aligned with global environmental treaties or policy goals

Select from:

✓ Yes, we have evaluated, and it is aligned

(4.11.1.12) Global environmental treaties or policy goals aligned with your organization's engagement on this policy, law or regulation

Select all that apply

✓ Paris Agreement

Row 3

(4.11.1.1) Specify the policy, law, or regulation on which your organization is engaging with policy makers

PNG Environment Act and regulations

(4.11.1.2) Environmental issues the policy, law, or regulation relates to

Select all that apply

✓ Water

(4.11.1.3) Focus area of policy, law, or regulation that may impact the environment

Environmental impacts and pressures

☑ Water pollution

(4.11.1.4) Geographic coverage of policy, law, or regulation

Select from:

National

(4.11.1.5) Country/area/region the policy, law, or regulation applies to

Select all that apply

✓ Papua New Guinea

(4.11.1.6) Your organization's position on the policy, law, or regulation

Select from:

Neutral

(4.11.1.8) Type of direct engagement with policy makers on this policy, law, or regulation

Select all that apply

- Regular meetings
- ✓ Participation in working groups organized by policy makers
- ☑ Responding to consultations

(4.11.1.9) Funding figure your organization provided to policy makers in the reporting year relevant to this policy, law, or regulation (currency)

0

(4.11.1.10) Explain the relevance of this policy, law, or regulation to the achievement of your environmental commitments and/or transition plan, how this has informed your engagement, and how you measure the success of your engagement

The PNG Environment Act 2002 and Environment (Water Quality Criteria) Regulation 2002 are the key pieces of legislation that governs the Hidden Valley Mine. Our Environment Permit that stipulated the conditions of approval to operate and close Hidden Valley is pursuant to the Environment Act. The Environment Permit includes conditions on our water quality criteria (WQC), discharge locations and water take limits. The WQC included in the Environment Permit are consistent with

the Environment (Water Quality Criteria) Regulation. Harmony has a strong relationship with the PNG environmental regulator with various correspondance, meeting and site visit conducted through the year.

(4.11.1.11) Indicate if you have evaluated whether your organization's engagement on this policy, law, or regulation is aligned with global environmental treaties or policy goals

Select from:

✓ Yes, we have evaluated, and it is aligned

(4.11.1.12) Global environmental treaties or policy goals aligned with your organization's engagement on this policy, law or regulation

Select all that apply

☑ Sustainable Development Goal 6 on Clean Water and Sanitation

Row 4

(4.11.1.1) Specify the policy, law, or regulation on which your organization is engaging with policy makers

Queensland Environment Protection Act and regulations and environmental project policies (EPPs)

(4.11.1.2) Environmental issues the policy, law, or regulation relates to

Select all that apply

✓ Climate change

(4.11.1.3) Focus area of policy, law, or regulation that may impact the environment

Environmental protection and management procedures

☑ Environmental registries

(4.11.1.4) Geographic coverage of policy, law, or regulation

Select from:

National

(4.11.1.5) Country/area/region the policy, law, or regulation applies to

Select all that apply

Australia

(4.11.1.6) Your organization's position on the policy, law, or regulation

Select from:

Neutral

(4.11.1.8) Type of direct engagement with policy makers on this policy, law, or regulation

Select all that apply

- Regular meetings
- ✓ Participation in working groups organized by policy makers
- ☑ Responding to consultations

(4.11.1.9) Funding figure your organization provided to policy makers in the reporting year relevant to this policy, law, or regulation (currency)

0

(4.11.1.10) Explain the relevance of this policy, law, or regulation to the achievement of your environmental commitments and/or transition plan, how this has informed your engagement, and how you measure the success of your engagement

In the State of Queensland, mining operations are subject to the Environmental Protection Act 1994 (Qld) and Environmental Protection Regulations 2019. The Queensland Environmental Protection Act and Regulations prescribe the preparation and assessment of environmental impact studies for purposes of the issuance of Environmental Authorities ("EAs") to perform environmentally relevant activities. The Eva Copper Project was initially granted an EA on July 12, 2012 following approval of an Environmental Impact Statement ("EIS") and an Environmental Management Plan, ("EMP"). The Eva Copper Project has since undergone various amendments, both major and minor in nature, with the current EA issued on 23 October 2024. A recent amendment has secured approval for the construction of a solar farm as part of the project's power solution. The Eva Copper Project is currently navigating a further EA amendment which is expected to conclude in 2026. Engagement with regulators and other stakeholders occurs throughout the EA amendment process.

(4.11.1.11) Indicate if you have evaluated whether your organization's engagement on this policy, law, or regulation is aligned with global environmental treaties or policy goals

Select from:

✓ Yes, we have evaluated, and it is aligned

(4.11.1.12) Global environmental treaties or policy goals aligned with your organization's engagement on this policy, law or regulation

Select all that apply

✓ Paris Agreement [Add row]

(4.11.2) Provide details of your indirect engagement on policy, law, or regulation that may (positively or negatively) impact the environment through trade associations or other intermediary organizations or individuals in the reporting year.

Row 1

(4.11.2.1) Type of indirect engagement

Select from:

✓ Indirect engagement via a trade association

(4.11.2.4) Trade association

Africa

☑ Minerals Council South Africa

(4.11.2.5) Environmental issues relevant to the policies, laws, or regulations on which the organization or individual has taken a position

Select all that apply

- ✓ Climate change
- ✓ Water

(4.11.2.6) Indicate whether your organization's position is consistent with the organization or individual you engage with

Select from:

Consistent

(4.11.2.7) Indicate whether your organization attempted to influence the organization or individual's position in the reporting year

Select from:

✓ Yes, we publicly promoted their current position

(4.11.2.8) Describe how your organization's position is consistent with or differs from the organization or individual's position, and any actions taken to influence their position

Harmony's engagement with the Minerals Council of South Africa is a component of its approach to environmental policy and regulatory issues in South Africa. As an active member, Harmony participates in the Council's Environmental Policy Committee, which provides a structured platform for dialogue with government on a wide range of environmental matters, including water stewardship, climate and energy policy, biodiversity conservation, waste management, and mine rehabilitation. This engagement ensures that Harmony's practices remain aligned with both national legislation and international best practice standards, such as those of the ICMM. Through the Minerals Council, Harmony influences the broader mining industry's environmental agenda by advocating for sustainable practices that align with global principles of responsible mining and national development objectives. This includes ensuring that policies reflect the need for efficient resource use, long-term ecosystem protection, and a just transition to a low-carbon economy. By working collectively with industry and policymakers, Harmony ensures that its environmental strategies including climate change, energy efficiency, water stewardship, biodiversity management, waste reduction, and rehabilitation are not only compliant but also forward-looking, contributing to shared sustainability goals across the sector. Harmony's active role within these forums ensures that its policy positions remain well-informed, adaptive to regulatory shifts, and consistent with the broader objectives of sustainable development and responsible mining for our operations.

(4.11.2.9) Funding figure your organization provided to this organization or individual in the reporting year (currency)

0

(4.11.2.11) Indicate if you have evaluated whether your organization's engagement is aligned with global environmental treaties or policy goals

\sim		•	
\ <u>\</u>	ΔCT	from:	

✓ Yes, we have evaluated, and it is aligned

(4.11.2.12) Global environmental treaties or policy goals aligned with your organization's engagement on policy, law or regulation

Select all that apply

- ✓ Paris Agreement
- ☑ Sustainable Development Goal 6 on Clean Water and Sanitation [Add row]
- (4.12) Have you published information about your organization's response to environmental issues for this reporting year in places other than your CDP response?

Select from:

Yes

(4.12.1) Provide details on the information published about your organization's response to environmental issues for this reporting year in places other than your CDP response. Please attach the publication.

Row 1

(4.12.1.1) Publication

Select from:

☑ In mainstream reports, in line with environmental disclosure standards or frameworks

(4.12.1.2) Standard or framework the report is in line with

Select all that apply

✓ GRI

✓ TCFD

(4.12.1.3) Environmental issues covered in publication

Select all that apply

- ✓ Climate change
- ✓ Water

(4.12.1.4) Status of the publication

Select from:

Complete

(4.12.1.5) Content elements

Select all that apply

- Strategy
- **✓** Governance
- Emission targets
- ✓ Risks & Opportunities

✓ Value chain engagement

✓ Water accounting figures

✓ Content of environmental policies

(4.12.1.6) Page/section reference

Our Integrated Annual Report: Section "Our Risk and Opportunity Profile" pg 50-67 Section "Sustainable Development" pg 48-49 Section "Governing with purpose" pg 74-80

(4.12.1.7) Attach the relevant publication

HAR-IR24.pdf

(4.12.1.8) Comment

Harmony's Integrated Annual Report provides a broad overview of the company's operations and environment related matters. More detailed information on environmental issues such as water management and climate change are provided in the ESG report.

[Add row]

C5. Business strategy

(5.1) Does your organization use scenario analysis to identify environmental outcomes?

Climate change

(5.1.1) Use of scenario analysis

Select from:

Yes

(5.1.2) Frequency of analysis

Select from:

Water

(5.1.1) Use of scenario analysis

Select from:

Yes

(5.1.2) Frequency of analysis

Select from:

☑ Every three years or less frequently [Fixed row]

(5.1.1) Provide details of the scenarios used in your organization's scenario analysis.

Climate change

(5.1.1.1) Scenario used

Physical climate scenarios

☑ RCP 2.6

(5.1.1.2) Scenario used SSPs used in conjunction with scenario

Select from:

✓ SSP1

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- ✓ Acute physical
- ☑ Chronic physical
- Technology

(5.1.1.6) Temperature alignment of scenario

Select from:

☑ 1.6°C - 1.9°C

(5.1.1.7) Reference year

(5.1.1.8) Timeframes covered

Select all that apply

✓ 2100

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

- ☑ Changes to the state of nature
- ☑ Changes in ecosystem services provision
- ✓ Climate change (one of five drivers of nature change)

Finance and insurance

Cost of capital

Stakeholder and customer demands

- ✓ Consumer sentiment
- ✓ Impact of nature footprint on reputation

Regulators, legal and policy regimes

- ☑ Global regulation
- ☑ Global targets

Direct interaction with climate

✓ On asset values, on the corporate

Macro and microeconomy

- ✓ Domestic growth
- ☑ Globalizing markets

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Major Assumptions • Alignment with international climate policies and national commitments, such as the Paris Agreement and Nationally Determined Contributions (NDCs), and anticipation of future regulatory changes and potential carbon pricing mechanisms. • Macroeconomic trend analysis, including global economic growth, inflation rates, and commodity prices, and their impact on supply and demand for metals and minerals. Projections on local weather patterns such as increased temperatures, changes in precipitation, extreme weather events, demographic trends, land use changes, availability of natural resources, and infrastructure development and resilience. • Expectations about advancements in mining technologies, renewable energy integration, energy efficiency improvements, and innovations to mitigate environmental impacts and enhance operational efficiency. • Projections on energy consumption patterns and the transition to renewable energy sources, and the impact of energy policies on operational costs and carbon footprint. Severity or Intensity of Driving Forces • Projected severity of climate impacts on ecosystems and biodiversity, and potential shifts in ecosystem services provision due to climate change. • Anticipated changes in the cost of capital due to climate risks and the sensitivity of financial markets to environmental impacts and dependencies. • Shifts in consumer sentiment and attention to environmental impacts, and their impact on reputation and sensitivity to inequity of nature impacts. • Global targets and regulations for emissions reductions, and methodologies and expectations for science-based targets. • Availability and granularity of climate and environmental data, and advances in data collection and sharing technologies. Uncertainties and Constraints • Uncertainty in the intensity and frequency of extreme weather events and variability in climate models and projections. • Uncertainty in commodity prices, exchange rates, market demand, and potential economic downturns and their impact on investment and operational costs. • Unpredictability in the pace of technological advancements and policy changes, and constraints to the adoption and implementation of new technologies. • Geopolitical risks, like regulatory changes, political instability, and social unrest, and their potential impacts on supply chains and community relationship.

(5.1.1.11) Rationale for choice of scenario

Scenario 3: The high mitigation scenario aims to limit global warming to below 2°C, aligning with the below 2°C scenario (B2DS) through ambitious NDCs and technological advancements. Both scenarios are associated with RCP2.6, a low emissions trajectory, and SSP1 (Sustainability), characterised by sustainable development, strong global cooperation, socio-economic equality, and environmentally friendly practices. This alignment implies a future where sustainable practices and global cooperation are crucial for achieving climate goals and transitioning to a low-carbon economy. This scenario also aligns with Shell's Sky 1.5 scenario. The Paris Agreement's "ratchet mechanism" will increase emission reduction ambitions in 2020 and 2025, enhancing climate commitments in Harmony's operating countries.

Water

(5.1.1.1) Scenario used

Water scenarios

✓ WRI Aqueduct

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- ✓ Policy
- Market
- Reputation
- Technology
- ✓ Acute physical

☑ Chronic physical

(5.1.1.7) Reference year

2023

(5.1.1.8) Timeframes covered

Select all that apply

✓ 2100

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

- ☑ Changes to the state of nature
- ☑ Changes in ecosystem services provision
- ✓ Climate change (one of five drivers of nature change)

Finance and insurance

Stakeholder and customer demands

- ✓ Consumer sentiment
- ✓ Impact of nature footprint on reputation

Regulators, legal and policy regimes

- ☑ Global regulation
- Global targets

Direct interaction with climate

✓ On asset values, on the corporate

Macro and microeconomy

- ✓ Domestic growth
- ✓ Globalizing markets

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Major Assumptions • Alignment with international climate policies and national commitments, such as the Paris Agreement and Nationally Determined Contributions (NDCs), and anticipation of future regulatory changes and potential carbon pricing mechanisms. • Macroeconomic trends, including global economic growth, inflation rates, and commodity prices, and their impact on supply and demand for metals and minerals. • Projections on local weather patterns such as increased temperatures, changes in precipitation, extreme weather events, demographic trends, land use changes, availability of natural resources, and infrastructure development and resilience. • Expectations about advancements in mining technologies, renewable energy integration, energy efficiency improvements, and innovations to mitigate environmental impacts and enhance operational efficiency. • Projections on energy consumption patterns and the transition to renewable energy sources, and the impact of energy policies on operational costs and carbon footprint. Severity or Intensity of Driving Forces • Projected severity of climate impacts on ecosystems and biodiversity, and potential shifts in ecosystem services provision due to climate change. • Anticipated changes in the cost of capital due to climate risks and the sensitivity of financial markets to environmental impacts and dependencies. • Shifts in consumer sentiment and attention to environmental impacts, and their impact on reputation and sensitivity to inequity of nature impacts. • Global targets and regulations for emissions reductions, and methodologies and expectations for science-based targets. • Availability and granularity of climate and environmental data, and advances in data collection and sharing technologies. Uncertainties and Constraints • Uncertainty in the intensity and frequency of extreme weather events and variability in climate models and projections. • Uncertainty in commodity prices, exchange rates, market demand, and potential economic downturns and their impact on investment and operational costs. • Unpredictability in the pace of technological advancements and policy changes, and constraints to the adoption and implementation of new technologies. • Geopolitical risks, like regulatory changes, political instability, and social unrest, and their potential impacts on supply chains and community relationship.

(5.1.1.11) Rationale for choice of scenario

Relevance to Business Strategy Resilience Water-Stressed Area Identification: Harmony uses the WRI Aqueduct tool to identify and assess water risks in areas where its operations are located. This proactive approach helps Harmony mitigate potential water-related disruptions, ensuring continued production and sustainable operations. Operational Efficiency Alignment: The tool's insights into water availability and stress levels enable Harmony to optimize its water usage, implement water conservation measures, and reduce reliance on external water sources. This aligns with Harmony's broader strategy of enhancing operational efficiency while minimizing environmental impact and helps prioritize investments in infrastructure and technology that enhance the resilience of operations. Alignment with Strategy and Financial Planning Risk Management: Harmony's financial planning assumes effective management of water-related risks. The WRI Aqueduct tool provides the necessary data to develop robust risk management strategies, ensuring that Harmony allocates financial resources efficiently to mitigate these risks. Sustainability Commitment: Harmony's use of the WRI Aqueduct tool supports its commitment to sustainable water management practices. This not only ensures compliance with environmental regulations but also enhances Harmony's reputation as a responsible corporate citizen, which is crucial for long-term business viability. Scenario Planning: The WRI Aqueduct tool plays a crucial role in Harmony's scenario planning by providing data on water risks under various climate scenarios. This helps Harmony stress-test its financial models and ensures that its financial plans are resilient to potential water-related disruptions. Sources of Scenarios The scenarios used in Harmony's water risk assessments are primarily derived from the WRI Aqueduct tool, which integrates data from global climate models, hydrological data, and socioeconomic factors. Climate Models: The WRI Aqueduct tool uses global climate models to predict change

Water

(5.1.1.1) Scenario used

Physical climate scenarios

✓ RCP 2.6

(5.1.1.2) Scenario used SSPs used in conjunction with scenario

Select from:

✓ SSP3

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- Policy
- Market
- Reputation
- Technology
- ✓ Acute physical

Chronic physical

(5.1.1.6) Temperature alignment of scenario

Select from:

✓ 1.5°C or lower

(5.1.1.7) Reference year

2023

(5.1.1.8) Timeframes covered

Select all that apply

✓ 2100

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

- ✓ Changes to the state of nature
- ☑ Changes in ecosystem services provision
- ✓ Climate change (one of five drivers of nature change)

Finance and insurance

✓ Cost of capital

Stakeholder and customer demands

- ✓ Consumer sentiment
- ☑ Consumer attention to impact
- ✓ Impact of nature footprint on reputation

Regulators, legal and policy regimes

- ☑ Global regulation
- ☑ Global targets

Direct interaction with climate

✓ On asset values, on the corporate

Macro and microeconomy

- ✓ Domestic growth
- ✓ Globalizing markets

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Major Assumptions • Alignment with international climate policies and national commitments, such as the Paris Agreement and Nationally Determined Contributions (NDCs), and anticipation of future regulatory changes and potential carbon pricing mechanisms. • Macroeconomic trends, including global economic growth, inflation rates, and commodity prices, and their impact on supply and demand for metals and minerals. Projections on local weather patterns, increased temperatures, changes in precipitation, extreme weather events, demographic trends, land use changes, availability of natural resources, and infrastructure development and resilience. • Expectations about advancements in mining technologies, renewable energy integration, energy efficiency improvements, and innovations to mitigate environmental impacts and enhance operational efficiency. • Projections on energy consumption patterns and the transition to renewable energy sources, and the impact of energy policies on operational costs and carbon footprint. Severity or Intensity of Driving Forces • Projected severity of climate impacts on ecosystems and biodiversity, and potential shifts in ecosystem services provision due to climate change. • Anticipated changes in the cost of capital due to climate risks and the sensitivity of financial markets to environmental impacts and dependencies. • Shifts in consumer sentiment and attention to environmental impacts, and their impact on reputation and sensitivity to inequity of nature impacts. • Global targets and regulations for emissions reductions, and methodologies and expectations for science-based targets. • Availability and granularity of climate and environmental data, and advances in data collection and sharing technologies. Uncertainties and Constraints • Uncertainty in the intensity and frequency of extreme weather events and variability in climate models and projections. • Uncertainty in commodity prices, exchange rates, market demand, and potential economic downturns and their impact on investment and operational costs. • Unpredictability in the pace of technological advancements and policy changes, and constraints to the adoption and implementation of new technologies. • Geopolitical risks, like regulatory changes, political instability, and social unrest, and their potential impacts on supply chains and community relationship.

(5.1.1.11) Rationale for choice of scenario

Alignment with Strategy and Financial Planning Risk Management: Harmony's financial planning assumes effective management of water-related risks. The RCP and SSP scenarios provide the necessary data to develop robust risk management strategies, ensuring that Harmony allocates financial resources efficiently to mitigate these risks. Sustainability Commitment: Harmony's use of the RCP and SSP scenarios support its commitment to sustainable water management practices. This not only ensures compliance with environmental regulations but also enhances Harmony's reputation as a responsible corporate citizen, which is crucial for long-term business viability. Scenario Planning: The RCP and accompanying SSP scenario plays a crucial role in Harmony's scenario planning by providing data on water risks under various climate scenarios. This helps Harmony stress-test its financial models and ensures that its financial plans are resilient to potential water-related disruptions. Sources of Scenarios The scenarios used in Harmony's water risk assessments are primarily derived from the WRI Aqueduct tool along with the RCP scenarios, which integrates data from global climate models, hydrological data, and socioeconomic factors. Climate Models: The RCP scenarios apply global climate models to predict changes in precipitation and temperature, which affect water availability. Hydrological Data: It incorporates hydrological data to assess baseline water stress, including information on river basins and water consumption. Socioeconomic Data: The SSP scenario considers population growth, industrial water use, and agricultural demands which help project future water demand.

Water

(5.1.1.1) Scenario used

Water scenarios

✓ WWF Water Risk Filter

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

Policy

☑ Chronic physical

- ✓ Market
- ☑ Reputation
- Technology
- ✓ Acute physical

(5.1.1.7) Reference year

2023

(5.1.1.8) Timeframes covered

Select all that apply

✓ 2100

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

- ☑ Changes to the state of nature
- ☑ Changes in ecosystem services provision
- ✓ Climate change (one of five drivers of nature change)

Finance and insurance

✓ Cost of capital

Stakeholder and customer demands

- ✓ Consumer sentiment
- ✓ Consumer attention to impact
- ✓ Impact of nature footprint on reputation

Regulators, legal and policy regimes

- ☑ Global regulation
- ☑ Global targets

Direct interaction with climate

✓ On asset values, on the corporate

Macro and microeconomy

- ✓ Domestic growth
- ✓ Globalizing markets

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Major Assumptions • Alignment with international climate policies and national commitments, such as the Paris Agreement and Nationally Determined Contributions (NDCs), and anticipation of future regulatory changes and potential carbon pricing mechanisms. • Macroeconomic trends, including global economic growth. inflation rates, and commodity prices, and their impact on supply and demand for metals and minerals. • Projections on local weather patterns, increased temperatures, changes in precipitation, extreme weather events, demographic trends, land use changes, availability of natural resources, and infrastructure development and resilience. • Expectations about advancements in mining technologies, renewable energy integration, energy efficiency improvements, and innovations to mitigate environmental impacts and enhance operational efficiency. • Projections on energy consumption patterns and the transition to renewable energy sources, and the impact of energy policies on operational costs and carbon footprint. Severity or Intensity of Driving Forces • Projected severity of climate impacts on ecosystems and biodiversity, and potential shifts in ecosystem services provision due to climate change. Anticipated changes in the cost of capital due to climate risks and the sensitivity of financial markets to environmental impacts and dependencies. • Shifts in consumer sentiment and attention to environmental impacts, and their impact on reputation and sensitivity to inequity of nature impacts. • Global targets and regulations for emissions reductions, and methodologies and expectations for science-based targets. • Availability and granularity of climate and environmental data, and advances in data collection and sharing technologies. Uncertainties and Constraints • Uncertainty in the intensity and frequency of extreme weather events and variability in climate models and projections. • Uncertainty in commodity prices, exchange rates, market demand, and potential economic downturns and their impact on investment and operational costs. • Unpredictability in the pace of technological advancements and policy changes, and constraints to the adoption and implementation of new technologies. • Geopolitical risks, like regulatory changes, political instability, and social unrest, and their potential impacts on supply chains and community relationship.

(5.1.1.11) Rationale for choice of scenario

Relevance to Business Strategy Resilience Water-Stressed Area Identification: Harmony uses the WWF Water Risk Tool due to its beneficial spatial resolution to identify and rate water risks in areas where its operations are located. This proactive approach helps Harmony mitigate potential water-related disruptions, ensuring continued production and sustainable operations. Operational Efficiency Alignment: The tool's insights into water availability and stress levels at a granular level enable Harmony to optimize its water usage, implement water conservation measures, and reduce reliance on external water sources. This aligns with Harmony's broader strategy of enhancing operational efficiency while minimizing environmental impact and helps prioritize investments in infrastructure and technology that enhance the resilience of operations. Alignment with Strategy and Financial Planning Risk Management: Harmony's financial planning assumes effective management of water-related risks. The WWF Water Risk Tool provides the necessary data to develop robust risk management strategies, ensuring that Harmony allocates financial resources efficiently to mitigate these risks. Sustainability Commitment: Harmony's use of the WWF Water Risk tool supports its commitment to sustainable water management practices. This not only ensures compliance with environmental regulations but also enhances Harmony's reputation as a responsible

corporate citizen, which is crucial for long-term business viability. Sources of Information The tool utilizes information at a river basin level related to competition for water resources, the legislative environment and incorporates site-specific management practices in categorizing risk.

Climate change

(5.1.1.1) Scenario used

Physical climate scenarios

☑ RCP 6.0

(5.1.1.2) Scenario used SSPs used in conjunction with scenario

Select from:

✓ SSP3

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- ✓ Acute physical
- ☑ Chronic physical
- Technology

(5.1.1.6) Temperature alignment of scenario

☑ 3.0°C - 3.4°C

(5.1.1.7) Reference year

2023

(5.1.1.8) Timeframes covered

Select all that apply

✓ 2100

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

- ✓ Changes to the state of nature
- ☑ Changes in ecosystem services provision
- ✓ Climate change (one of five drivers of nature change)

Finance and insurance

✓ Cost of capital

Stakeholder and customer demands

- ✓ Consumer sentiment
- ☑ Impact of nature footprint on reputation

Regulators, legal and policy regimes

- ☑ Global regulation
- ☑ Global targets

Direct interaction with climate

✓ On asset values, on the corporate

Macro and microeconomy

✓ Domestic growth

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Major Assumptions • Alignment with international climate policies and national commitments, such as the Paris Agreement and Nationally Determined Contributions (NDCs), and anticipation of future regulatory changes and potential carbon pricing mechanisms. • Macroeconomic trend analysis, including global economic growth, inflation rates, and commodity prices, and their impact on supply and demand for metals and minerals. Projections on local weather patterns such as increased temperatures, changes in precipitation, extreme weather events, demographic trends, land use changes, availability of natural resources, and infrastructure development and resilience. • Expectations about advancements in mining technologies, renewable energy integration, energy efficiency improvements, and innovations to mitigate environmental impacts and enhance operational efficiency. • Projections on energy consumption patterns and the transition to renewable energy sources, and the impact of energy policies on operational costs and carbon footprint. Severity or Intensity of Driving Forces • Projected severity of climate impacts on ecosystems and biodiversity, and potential shifts in ecosystem services provision due to climate change. Anticipated changes in the cost of capital due to climate risks and the sensitivity of financial markets to environmental impacts and dependencies. • Shifts in consumer sentiment and attention to environmental impacts, and their impact on reputation and sensitivity to inequity of nature impacts. • Global targets and regulations for emissions reductions, and methodologies and expectations for science-based targets. • Availability and granularity of climate and environmental data, and advances in data collection and sharing technologies. Uncertainties and Constraints • Uncertainty in the intensity and frequency of extreme weather events and variability in climate models and projections. • Uncertainty in commodity prices, exchange rates, market demand, and potential economic downturns and their impact on investment and operational costs. • Unpredictability in the pace of technological advancements and policy changes, and constraints to the adoption and implementation of new technologies. • Geopolitical risks, like regulatory changes, political instability, and social unrest, and their potential impacts on supply chains and community relationship.

(5.1.1.11) Rationale for choice of scenario

Scenario 2: The Nationally Determined Contributions (NDCs) represent emission reduction targets under the UN Paris Agreement. Achieving all NDC targets would stabilise radiative forcing at 4.5 W/m² by 2100, with emissions peaking mid-century and then rapidly declining. However, the Current Policy Scenario (CPS), reflecting mid-2017 policy frameworks, falls short of the 1.5°C global warming target, leading to a projected warming of 2.7 to 3.7°C due to continued carbon dioxide increases. These scenarios are connected to SSP3 (Regional Rivalry), characterised by fragmented international cooperation and limited climate action, and align with Shell's Waves scenario.

Climate change

(5.1.1.1) Scenario used

Physical climate scenarios

☑ RCP 8.5

(5.1.1.2) Scenario used SSPs used in conjunction with scenario

Select from:

✓ SSP5

(5.1.1.3) Approach to scenario

Select from:

✓ Qualitative and quantitative

(5.1.1.4) Scenario coverage

Select from:

✓ Organization-wide

(5.1.1.5) Risk types considered in scenario

Select all that apply

- ✓ Acute physical
- ☑ Chronic physical
- Technology

(5.1.1.6) Temperature alignment of scenario

Select from:

✓ 4.0°C and above

(5.1.1.7) Reference year

2023

(5.1.1.8) Timeframes covered

Select all that apply

2100

(5.1.1.9) Driving forces in scenario

Local ecosystem asset interactions, dependencies and impacts

- ✓ Changes to the state of nature
- ☑ Changes in ecosystem services provision
- ✓ Climate change (one of five drivers of nature change)

Finance and insurance

Cost of capital

Stakeholder and customer demands

- ✓ Consumer sentiment
- ✓ Impact of nature footprint on reputation

Regulators, legal and policy regimes

- ☑ Global regulation
- ☑ Global targets

Direct interaction with climate

✓ On asset values, on the corporate

Macro and microeconomy

- ✓ Domestic growth
- ☑ Globalizing markets

(5.1.1.10) Assumptions, uncertainties and constraints in scenario

Major Assumptions • Alignment with international climate policies and national commitments, such as the Paris Agreement and Nationally Determined Contributions (NDCs), and anticipation of future regulatory changes and potential carbon pricing mechanisms. • Macroeconomic trend analysis, including global economic growth, inflation rates, and commodity prices, and their impact on supply and demand for metals and minerals. • Projections on local weather patterns such as increased temperatures, changes in precipitation, extreme weather events, demographic trends, land use changes, availability of natural resources, and infrastructure development and resilience. • Expectations about advancements in mining technologies, renewable energy integration, energy efficiency improvements, and innovations to mitigate environmental impacts and enhance operational efficiency. • Projections on energy consumption patterns and the transition to renewable energy sources, and the impact of energy policies on operational costs and carbon footprint. Severity or Intensity of Driving Forces • Projected severity of climate

impacts on ecosystems and biodiversity, and potential shifts in ecosystem services provision due to climate change. • Anticipated changes in the cost of capital due to climate risks and the sensitivity of financial markets to environmental impacts and dependencies. • Shifts in consumer sentiment and attention to environmental impacts, and their impact on reputation and sensitivity to inequity of nature impacts. • Global targets and regulations for emissions reductions, and methodologies and expectations for science-based targets. • Availability and granularity of climate and environmental data, and advances in data collection and sharing technologies. Uncertainties and Constraints • Uncertainty in the intensity and frequency of extreme weather events and variability in climate models and projections. • Uncertainty in commodity prices, exchange rates, market demand, and potential economic downturns and their impact on investment and operational costs. • Unpredictability in the pace of technological advancements and policy changes, and constraints to the adoption and implementation of new technologies. • Geopolitical risks, like regulatory changes, political instability, and social unrest, and their potential impacts on supply chains and community relationship.

(5.1.1.11) Rationale for choice of scenario

Scenario 1: The unmitigated scenario, based on IPCC's RCP8.5, represents a future with continuous greenhouse gas emissions increases, leading to a radiative forcing of 8.5 W/m2 by the end of the century and a global temperature rise of over 4°C. This scenario aligns with SSP5 (Fossil-Led Development), where socioeconomic development relies heavily on fossil fuels with limited climate-change mitigation. It features high population growth, slow technological advancements and fragmented global climate cooperation. Additionally, this scenario corresponds to Shell's Island scenario.

[Add row]

(5.1.2) Provide details of the outcomes of your organization's scenario analysis.

Climate change

(5.1.2.1) Business processes influenced by your analysis of the reported scenarios

Select all that apply

☑ Risk and opportunities identification, assessment and management

(5.1.2.2) Coverage of analysis

Select from:

Organization-wide

(5.1.2.3) Summarize the outcomes of the scenario analysis and any implications for other environmental issues

Harmony's scenario analysis highlights that climate change poses both physical and transition risks across our operations, workforce, and value chain. Physical risks identified include drought and water scarcity, rising temperatures, altered rainfall patterns, and an increased frequency of extreme weather events. These risks can disrupt mining operations, compromise worker health and safety, and reduce productivity. Chronic risks such as heat stress, water scarcity, and higher dust levels

pose ongoing threats, while acute risks such as wildfires and flooding require resilient infrastructure, contingency planning, and robust water management systems. These risks extend beyond operations into the surrounding communities, where climate-driven events may damage infrastructure, displace people, and affect public health creating social and reputational risks. While Harmony's high-mitigation scenario (Scenario 3) provides some protection, physical risks remain significant and require proactive management. Labour vulnerability is a central concern. The workforce faces risks from both chronic and acute climate impacts, compounded by limited global cooperation on climate action. Harmony recognises the need to safeguard employees while strengthening resilience through adaptation measures. Transition risks were also assessed. These include labour-related risks where new skills are required for renewable energy integration and evolving technologies. Harmony is investing in upskilling and reskilling programmes to reduce these risks and strengthen our position as an attractive employer in a low-carbon economy. Regulatory risks are another concern. More stringent environmental regulations, carbon pricing mechanisms, and capital requirements for emissions reduction technologies could raise operational costs. A specific emerging risk is the European Union's Carbon Border Adjustment Mechanism (CBAM). Its first phase, launched in October 2023, applies to cement, aluminium, iron and steel, hydrogen, fertiliser, and electricity. From 2026, the scope will expand, and metals produced by Harmony could be included. This creates uncertainty around future competitiveness and carbon exposure. Domestically, although the latest revision of South Africa's carbon tax framework allow electricity to remain revenue neutral with no pass-through of carbon costs by Eskom until 2030, emissions from electricity generation post 2030, poses additional risks. Any pass-through of carbon costs by Eskom post 2030 could significantly affect Harmony's electricity expenses. Harmony is engaging government through the Minerals Council of South Africa on this issue. The Australian Sustainability Reporting Standards (ASRS) are scheduled to take effect from January 2025 and will significantly expand corporate disclosure obligations. These standards will require entities to provide more detailed reporting on climate-related matters, including the use of climate scenarios to assess resilience, enhanced disclosure of climate risks and opportunities, and comprehensive reporting of greenhouse gas (GHG) emissions across scopes. Despite these risks, climate change also presents opportunities. Investments in energy-efficient technologies, renewable energy projects, and advanced water management can reduce exposure to physical risks while enhancing operational resilience. Furthermore, the transition to a low-carbon economy enables diversification into new metals and assets, positioning Harmony to benefit from the rising demand for climate-friendly products and sustainable minerals. This creates potential for revenue growth, competitive advantage, and leadership in responsible mining. Harmony manages these risks and opportunities through an integrated enterprise risk management (ERM) approach. Climate-related risks are embedded in our ERM processes and reviewed by the Audit and Risk Committee, ensuring alignment between climate resilience, business strategy, and governance oversight.

Water

(5.1.2.1) Business processes influenced by your analysis of the reported scenarios

Select all that apply

- ☑ Risk and opportunities identification, assessment and management
- ✓ Strategy and financial planning
- ☑ Resilience of business model and strategy
- Capacity building
- ☑ Target setting and transition planning

(5.1.2.2) Coverage of analysis

Select from:

(5.1.2.3) Summarize the outcomes of the scenario analysis and any implications for other environmental issues

The water-related scenario analysis performed by Harmony Gold using the WRI Aqueduct tool has provided critical insights into the potential risks associated with water scarcity and stress, particularly in regions where Harmony operates. The outcomes of this analysis have significant implications for Harmony's business strategy and environmental management practices. Outcomes of Water-Related Scenario Analysis 1. Identification of High-Risk Areas: The analysis identified specific operations located in regions with high water stress, where the availability of water is a significant concern. This has highlighted the need for enhanced water management strategies, particularly in areas prone to drought and reduced water availability. 2. Operational Resilience: The scenario analysis underscored the importance of ensuring operational resilience in water-stressed areas. As a result, Harmony has prioritized investments in water-efficient technologies and infrastructure to reduce reliance on external water sources. This includes initiatives to increase water recycling and the development of alternative water sources to ensure the continuity of mining operations during periods of water scarcity. In FY23 potable water use decreased by 5.5% through water treatment plants commissioned at strategic operations such as Target Mine, and water recycling increased by 12.8%. The water treatment plants allow us to ensure water security and reduce pumping costs for our operations, treat excess water to potable standard for our operations and water suppliers (Rand Water and Midvaal), provide economically viable irrigation for high-income crop cultivation in adjacent communities, and reduce our overall potable water consumption at our operations. 3.

Strategic Water Management: The findings from the WRI Aqueduct analysis have been integrated into Harmony's broader water stewardship strategy. This strategy focuses on reducing water consumption, improving water use efficiency, and mitigating the risks associated with water shortages. These efforts are aligned with Harmony's commitment to sustainable and responsible environmental management. Implications for Strategy and Financial Planning The insights gained from the water-related scenario analysis have influenced Harmony's strategic and financial planning by: • Mitigation of Water Risks: Harmony has allocated resources to mitigate identified water risks, ensuring that operations remain viable in the face of water scarcity. This includes capital investments in water-saving technologies and infrastructure to support sustainable water use across its operations. • Long-Term Sustainability: By incorporating the outcomes of the WRI Aqueduct analysis into its planning processes, Harmony is better positioned to manage the long-term sustainability of its water resources. This not only supports operational continuity but also aligns with Harmony's broader environmental goals. •Financial Risk Management: The scenario analysis has also informed financial planning by highlighting areas where potential water shortages could lead to increased operational costs or disruptions. Harmony has used these insights to develop contingency plans and financial strategies that account for these risks, ensuring that Harmony remains resilient in the face of environmental challenges. This focused approach to water-related scenario analysis demonstrates Harmony's commitment to integrating environmental risk management into its business strategy, thereby enhancing its overall resilience.

[Fixed row]

(5.2) Does your organization's strategy include a climate transition plan?

(5.2.1) Transition plan

Select from:

☑ No, but we are developing a climate transition plan within the next two years

(5.2.15) Primary reason for not having a climate transition plan that aligns with a 1.5°C world

Select from:

✓ Not an immediate strategic priority

(5.2.16) Explain why your organization does not have a climate transition plan that aligns with a 1.5°C world

Harmony currently has a broader decarbonisation strategy that is outlined in our ESG report. However it is not a standalone transition plan. The plan is in the process of being developed and will align with current climate science and a 1.5C trajectory.

[Fixed row]

(5.3) Have environmental risks and opportunities affected your strategy and/or financial planning?

(5.3.1) Environmental risks and/or opportunities have affected your strategy and/or financial planning

Select from:

✓ Yes, both strategy and financial planning

(5.3.2) Business areas where environmental risks and/or opportunities have affected your strategy

Select all that apply

- Products and services
- ✓ Upstream/downstream value chain
- ✓ Investment in R&D
- Operations

[Fixed row]

(5.3.1) Describe where and how environmental risks and opportunities have affected your strategy.

Products and services

(5.3.1.1) Effect type

Select all that apply

- ✓ Risks
- Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

- ✓ Climate change
- ✓ Water

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

Harmony's primary products are gold and byproducts like silver. Environmental risks and opportunities influence the long-term demand, market positioning, and value proposition of these commodities. Climate change, water scarcity, and related environmental pressures affect investor preferences, regulatory frameworks, and enduse markets for our metals, which in turn shape our strategic approach. For gold, environmental factors reinforce its role as a hedge during periods of global uncertainty, including climate-related volatility. Investors are increasingly attracted to companies that demonstrate credible environmental stewardship, meaning Harmony's ability to position its gold as responsibly produced is critical to maintaining competitiveness. By embedding water and energy efficiency into our production processes, we enhance the sustainability profile of our gold, strengthening its appeal to customers, refiners, and end-users that face growing ESG disclosure requirements. Market and Product Stewardship: Downstream, Harmony positions its gold as both ethically and sustainably produced, highlighting reduced water footprints and progress toward climate commitments. By aligning product strategy with environmental risks and opportunities, Harmony ensures that its gold remain relevant, competitive, and attractive in a rapidly changing global economy.

Upstream/downstream value chain

(5.3.1.1) Effect type

Select all that apply

- ✓ Risks
- Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

- ✓ Climate change
- ✓ Water

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

Supplier Water and Climate Management: Harmony Gold recognises that the resilience of its supply chain depends on the Upstream Value Chain 1. environmental practices of its suppliers. In regions such as South Africa and Papua New Guinea, where water scarcity and climate variability are material risks, Harmony actively engages with top suppliers to promote robust water and emissions management practices. This includes encouraging suppliers to adopt efficiency technologies, renewable energy use, and climate adaptation measures. By prioritising partners who demonstrate effective stewardship of water and carbon, Harmony reduces exposure to operational disruptions and supports a more sustainable value chain. 2. Responsible Sourcing and Procurement: Environmental risks including water stress, rising energy costs, and future carbon pricing, have directly influenced Harmony's procurement strategy. Preference is given to suppliers who align with Harmony's water stewardship and low-carbon transition goals, ensuring that procured goods and services do not exacerbate water shortages or contribute excessively to GHG emissions. Embedding environmental criteria into sourcing supports regulatory compliance, mitigates reputational risks, and enhances resilience to climate-related shocks in the upstream supply chain. Downstream Value Chain 1. Water and Energy Efficiency in Refining: Harmony's stake in the Rand Refinery brings with it responsibility for managing environmental impacts during the refining process. This includes stringent controls on water usage, effluent management, and energy consumption. With climate change expected to intensify resource constraints, Harmony works with the refinery to ensure alignment with international best practices and to implement continuous improvements in efficiency and environmental performance. 2. Market and Product Stewardship: Downstream, Harmony positions its gold as both ethically and sustainably produced, highlighting reduced water footprints and progress toward climate commitments. This strategy aligns with the rising global demand for sustainable materials, where both water and carbon performance are critical differentiators for investors and consumers. By ensuring traceability and transparent disclosure. Harmony strengthens market confidence, reinforces its social license to operate, and secures long-term competitiveness.

Investment in R&D

(5.3.1.1) Effect type

Select all that apply

✓ Risks

Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

✓ Climate change

Water

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

Influence of Water and Climate Risks on R&D Strategy 1. Water Scarcity and Climate Resilience Harmony operates in regions such as South Africa, Australia and Papua New Guinea where water scarcity and climate variability are critical challenges. Increasing drought frequency, shifting rainfall patterns, and extreme weather events directly threaten operational continuity and community relations. In response, Harmony has made R&D investment in water-saving, water efficiency and

climate-resilient technologies a strategic priority. 2. Development of Water Treatment and Energy-Efficient Solutions A core focus of Harmony's R&D programme has been the design and construction of advanced water treatment plants. These facilities can treat process water to potable quality, thereby reducing reliance on scarce external water supplies. Many are developed with energy efficiency and emissions reductions in mind, ensuring that new technologies contribute not only to water security but also to Harmony's broader climate transition goals. 3. Innovation in Recycling and Circular Resource Use Harmony continues to invest in recycling technologies that maximise water reuse across operations. Improvements in treatment and recirculation systems have significantly lowered potable water intake and operating costs, while reducing climate-related risks such as water stress under prolonged drought conditions. Strategic Decisions and Implementation 1. Long-Term Investment in Climate-Smart Water Technologies Harmony's R&D approach is guided by a long-term perspective on climate and water risks. This includes exploring new harvesting methods, predictive climate modelling tools, and digital monitoring systems to anticipate disruptions before they occur. 2. Partnerships and Collaboration Recognising that climate and water challenges extend beyond the mine gate, Harmony actively partners with peers, research institutions, and government agencies to co-develop regional water and climate management solutions. Key Outcomes and Future Focus Harmony's sustained R&D investment has already yielded tangible results: reduced potable water demand, improved recycling ratios, and enhanced climate resilience across operations. Looking forward, Harmony intends to expand R&D to include integrated water—energy—climate solutions, such as renewable-powered treatment plants, nature-based water storage systems, and adaptive infrastructure capable of withstanding extreme climate events.

Operations

(5.3.1.1) Effect type

Select all that apply

Risks

Opportunities

(5.3.1.2) Environmental issues relevant to the risks and/or opportunities that have affected your strategy in this area

Select all that apply

✓ Climate change

Water

(5.3.1.3) Describe how environmental risks and/or opportunities have affected your strategy in this area

Water and Climate Risks in Operational Strategy 1. Water Security as a Strategic Focus Harmony recognises that water scarcity and climate variability pose significant risks to operations, particularly in South Africa and Australia where competition for water is high and rainfall is becoming increasingly unpredictable. In response, Harmony has made water security a core operational priority. Investments in advanced water management systems, including the construction of treatment plants at sites such as Mponeng and Covalent, aim to offset potable water demand, reduce dependence on municipal supply, and build resilience to future droughts.

2. Operational Investments in Climate-Resilient Infrastructure Harmony has expanded its portfolio of water treatment and recycling facilities across its operations. New plants in the North West and Free State provinces are designed to treat excess process water to potable standards, simultaneously enhancing water availability and reducing pumping costs. 3. Increasing Water Recycling and Efficiency To strengthen resilience, Harmony has prioritised increasing its water recycling ratio and

reducing freshwater and potable water withdrawals. Measures include rainwater harvesting systems and the recommissioning of interception boreholes, which capture and redirect water for reuse in processing facilities. Strategic Decisions and Time Horizons 1. Long-Term Commitment to Climate and Water Resilience Harmony views water and climate risk management as a long-term strategic imperative. By investing in climate-smart infrastructure and technologies today, the company is preparing to withstand intensifying risks such as heatwaves, declining rainfall, and extreme weather events projected under future climate scenarios. 2. Integration into Operational Strategy and Risk Management Water and climate considerations are fully integrated into Harmony's operational planning and enterprise risk management frameworks. This includes embedding water efficiency and climate adaptation targets into performance indicators and ensuring that all operations adopt best practices for water stewardship. Outlook and Opportunities Harmony's operational strategy demonstrates how addressing water scarcity and climate change can create resilience while unlocking opportunities for efficiency and cost savings. Looking ahead, Harmony plans to continue investing in adaptive technologies, renewable energy-powered water systems, and regional collaboration to secure long-term water availability and strengthen resilience to climate change. [Add row]

(5.3.2) Describe where and how environmental risks and opportunities have affected your financial planning.

Row 1

(5.3.2.1) Financial planning elements that have been affected

Select all that apply

Assets

Revenues

✓ Liabilities

✓ Direct costs

✓ Indirect costs

Access to capital

✓ Capital allocation

Capital expenditures

Acquisitions and divestments

(5.3.2.2) Effect type

Select all that apply

✓ Risks

Opportunities

(5.3.2.3) Environmental issues relevant to the risks and/or opportunities that have affected these financial planning elements

Select all that apply

√	Climate	change
----------	---------	--------

Water

(5.3.2.4) Describe how environmental risks and/or opportunities have affected these financial planning elements

Assets Water scarcity and climate variability in South Africa, Australia and Papua New Guinea have influenced Harmony's asset base, requiring substantial investment in climate-resilient infrastructure. Harmony has expanded its portfolio of water treatment plants and recycling facilities at operations such as Mponeng and Covalent. These assets are designed to offset potable water consumption, reduce reliance on municipal supply, and enhance resilience against climate-related droughts and extreme weather. Capital Allocation Environmental risks, particularly water stress and climate change, have reshaped Harmony's capital allocation priorities. Significant funding is directed toward projects that improve water efficiency, energy use, and climate resilience, ensuring that capital is aligned with both operational needs and sustainability goals. Capital Expenditures (Capex) Harmony has committed substantial Capex to enhance water and climate resilience across its operations. At Doornkop, for example, investments target reduced potable water intake and higher recycling ratios, directly improving operational efficiency and reducing exposure to climate-driven water scarcity. Liabilities Environmental assists in reducing Harmony's potential liabilities. By implementing advanced water treatment solutions and improving efficiency, the company is lowering its exposure to regulatory penalties, remediation costs, and climate-related environmental liabilities. Direct and Indirect Costs Water-related risks such as rising municipal tariffs, treatment costs, and energy inputs for pumping, have had a material impact on direct and indirect costs. Climate change exacerbates these pressures, with droughts driving higher water tariffs and regulatory requirements. Harmony mitigates these impacts through increased water recycling, efficiency measures, and rainwater harvesting, which help stabilise long-term cost structures while supporting sustainable operations. Access to Capital Sustainability-linked financing has become a critical enabler for Harmony. Lenders and investors increasingly expect management of climate and environmental risks. Harmony's alignment of KPIs with water management, GHG emissions, and energy efficiency has enhanced its ability to access capital markets, lowering financing costs and ensuring long-term investment support. [Add row]

(5.4) In your organization's financial accounting, do you identify spending/revenue that is aligned with your organization's climate transition?

Identification of spending/revenue that is aligned with your organization's climate transition
Select from: ☑ No, and we do not plan to in the next two years

[Fixed row]

(5.5) Does your organization invest in research and development (R&D) of low-carbon products or services related to your sector activities?

(5.5.1) Investment in low-carbon R&D

Select from:

✓ No

(5.5.2) Comment

We are focused on investing in capital projects that contribute to a low carbon future, for example: Expansion into copper: The acquisition of the Eva Copper Project and investments in copper are part of a strategy to contribute to the low-carbon future by providing critical minerals required for renewable energy technologies. Emission Reduction Initiatives: Harmony has committed to reducing greenhouse gas emissions through operational efficiency and has planned investments in renewable energy projects to support these efforts. Renewable energy projects: Harmony has outlined a phased renewable energy rollout strategy, which includes solar PV, wheeling wind energy, hydropower, and energy-efficiency projects aimed at achieving net-zero emissions by 2045. [Fixed row]

(5.9) What is the trend in your organization's water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

(5.9.1) Water-related CAPEX (+/- % change)

3

(5.9.2) Anticipated forward trend for CAPEX (+/- % change)

6

(5.9.3) Water-related OPEX (+/- % change)

7

(5.9.4) Anticipated forward trend for OPEX (+/- % change)

10

(5.9.5) Please explain

Our capital and operating costs related to water have increased and are anticipated to increase. The following initiatives have led to the change. Refurbishment and operation of the Witpan wastewater treatment plant, re-establish (maintain and operate) the Carletonville and Stilfontein wastewater treatment plants. Leak Detection and Repair: Implemented systems for detecting and repairing water leaks to minimize water loss and improve efficiency. Water Recycling Initiatives: Increased water recycling across operations, including the use of interception boreholes at Doornkop to capture and reuse water in processing facilities and rainwater harvesting at Hidden Valley. Water Treatment Plant Expansion: Initiated construction of an additional water treatment plants at Tau Tona in FY2025, aimed at reducing potable water use.

[Fixed row]

(5.10) Does your organization use an internal price on environmental externalities?

Use of internal pricing of environmental externalities	Environmental externality priced
Select from: ✓ Yes	Select all that apply ☑ Water

[Fixed row]

(5.10.2) Provide details of your organization's internal price on water.

Row 1

(5.10.2.1) Type of pricing scheme

Select from:

✓ Shadow price

(5.10.2.2) Objectives for implementing internal price

Select all that apply

✓ Drive water efficiency

✓ Incentivize consideration of water-related issues in risk assessment

- ✓ Drive water-related investment
- ✓ Influence strategy and/or financial planning
- ✓ Setting and/or achieving of water-related policies and targets
- ✓ Incentivize consideration of water-related issues in decision making

(5.10.2.3) Factors beyond current market price are considered in the price

Select from:

Yes

(5.10.2.4) Factors considered when determining the price

Select all that apply

- Costs of disposing water
- ✓ Costs of treating water
- ✓ Costs of transporting water
- **✓** Existing water tariffs

(5.10.2.5) Calculation methodology and assumptions made in determining the price

The internal water price being used is R17.01 per KI and is based on the average price of water from various sources and increased yearly on a CPI basis – we have an enlisted the help of an economist who looks at pricing and forecasting for key commodities for our operations.

(5.10.2.6) Stages of the value chain covered

Select all that apply

- ✓ Direct operations
- ✓ Upstream value chain
- ✓ Downstream value chain

☑ Project/site specific coverage

(5.10.2.7) Pricing approach used – spatial variance

Select from:

✓ Uniform

(5.10.2.9) Pricing approach used – temporal variance

Select from:

✓ Static

(5.10.2.11) Minimum actual price used (currency per cubic meter)

17.01

(5.10.2.12) Maximum actual price used (currency per cubic meter)

17.01

(5.10.2.13) Business decision-making processes the internal water price is applied to

Select all that apply

- Capital expenditure
- Operations
- ☑ Risk management
- ✓ Opportunity management

(5.10.2.14) Internal price is mandatory within business decision-making processes

Select from:

✓ Yes, for all decision-making processes

(5.10.2.15) Pricing approach is monitored and evaluated to achieve objectives

Yes

(5.10.2.16) Details of how the pricing approach is monitored and evaluated to achieve your objectives

Harmony monitors the pricing approach for their shadow price on water by integrating water security management and related risks into their long-term business objectives, strategy, and financial planning. We aim to ensure that our water use aligns with both environmental stewardship and operational needs while considering the economic impacts on local communities. We evaluate our water management policies, such as conservation, water reuse, and reduced potable water intake. These measures ensure that water remains available for community needs and help manage the costs associated with water scarcity and water utility tariffs. We are also committed to significant capital investments in increasing water recycling ratios and reducing potable water intake, which directly impacts the financial viability and shadow pricing of water. The integration of water-related risks into financial and operational planning helps Harmony maintain financial stability while managing water as a critical resource for mining activities and community development.

[Add row]

(5.11) Do you engage with your value chain on environmental issues?

	Engaging with this stakeholder on environmental issues	Environmental issues covered
Suppliers	Select from: ✓ Yes	Select all that apply ✓ Climate change ✓ Water
Customers	Select from: ✓ Yes	Select all that apply ☑ Climate change ☑ Water
Investors and shareholders	Select from: ✓ Yes	Select all that apply ✓ Climate change ✓ Water
Other value chain stakeholders	Select from:	Select all that apply

Engaging with this stakeholder on environmental issues	Environmental issues covered
✓ Yes	✓ Climate change✓ Water

[Fixed row]

(5.11.1) Does your organization assess and classify suppliers according to their dependencies and/or impacts on the environment?

Climate change

(5.11.1.1) Assessment of supplier dependencies and/or impacts on the environment

Select from:

✓ Yes, we assess the dependencies and/or impacts of our suppliers

(5.11.1.2) Criteria for assessing supplier dependencies and/or impacts on the environment

Select all that apply

☑ Contribution to supplier-related Scope 3 emissions

(5.11.1.3) % Tier 1 suppliers assessed

Select from:

☑ 76-99%

(5.11.1.4) Define a threshold for classifying suppliers as having substantive dependencies and/or impacts on the environment

Harmony classifies suppliers as having substantive climate-related dependencies and impacts when their operations are energy- or emissions-intensive, contribute materially to our Scope 3 footprint, or rely on carbon-exposed inputs such as electricity, fuel, or transport. Thresholds are set where supplier activities represent >5% of spend in high-impact categories or are critical to operational continuity.

(5.11.1.5) % Tier 1 suppliers meeting the threshold for substantive dependencies and/or impacts on the environment

Select from:

☑ 76-99%

(5.11.1.6) Number of Tier 1 suppliers meeting the thresholds for substantive dependencies and/or impacts on the environment

15

Water

(5.11.1.1) Assessment of supplier dependencies and/or impacts on the environment

Select from:

✓ Yes, we assess the dependencies and/or impacts of our suppliers

(5.11.1.2) Criteria for assessing supplier dependencies and/or impacts on the environment

Select all that apply

- ☑ Basin/landscape condition
- ✓ Dependence on water

(5.11.1.3) % Tier 1 suppliers assessed

Select from:

☑ 76-99%

(5.11.1.4) Define a threshold for classifying suppliers as having substantive dependencies and/or impacts on the environment

Threshold to identify a substantive impact: Our threshold to define these suppliers as having a substantive impact is whether the supplier operates in an area that is defined as water stressed and whether they are dependent on water availability for their activities and operations.

(5.11.1.5) % Tier 1 suppliers meeting the threshold for substantive dependencies and/or impacts on the environment

Select from:

☑ 76-99%

(5.11.1.6) Number of Tier 1 suppliers meeting the thresholds for substantive dependencies and/or impacts on the environment

15 [Fixed row]

(5.11.2) Does your organization prioritize which suppliers to engage with on environmental issues?

Climate change

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

✓ Yes, we prioritize which suppliers to engage with on this environmental issue

(5.11.2.2) Criteria informing which suppliers are prioritized for engagement on this environmental issue

Select all that apply

- ✓ In line with the criteria used to classify suppliers as having substantive dependencies and/or impacts relating to climate change
- ✓ Business risk mitigation
- Leverage over suppliers
- ☑ Regulatory compliance
- ✓ Supplier performance improvement

(5.11.2.4) Please explain

Harmony's engagement process is embedded in our decarbonization strategy, where suppliers are prioritised for engagement based on their climate change dependencies and impacts. The approach is structured around three key criteria: • Business risk mitigation: Suppliers are engaged as part of Harmony's broader risk management framework, with a focus on mitigating risks linked to climate change and ensuring alignment with Harmony's decarbonization and sustainability objectives. • Regulatory compliance: Engagement prioritises suppliers whose operations are subject to local environmental regulations and standards. Harmony emphasises compliance to avoid penalties, fulfilling commitments tied to our mining rights and agreements and maintain constructive relationships with regulators. •

Supplier performance improvement: Harmony actively works with suppliers to enhance their environmental stewardship practices, supporting improvements that align with Harmony's sustainability targets and reduce overall environmental impacts. Through this process, Harmony prioritises engagement with suppliers that understand their climate change risks and resilience to reinforcing our commitment to responsible supply chain management and decarbonization.

Water

(5.11.2.1) Supplier engagement prioritization on this environmental issue

Select from:

✓ Yes, we prioritize which suppliers to engage with on this environmental issue

(5.11.2.2) Criteria informing which suppliers are prioritized for engagement on this environmental issue

Select all that apply

- ☑ In line with the criteria used to classify suppliers as having substantive dependencies and/or impacts relating to water
- ✓ Business risk mitigation
- ✓ Leverage over suppliers
- ✓ Regulatory compliance
- ✓ Supplier performance improvement

(5.11.2.4) Please explain

Harmony's engagement process is articulated in our Water Management Strategy in which we prioritise suppliers for engagement on water based on: Business risk mitigation: Harmony prioritizes engagement with suppliers as part of their overall risk management strategy. This includes mitigating risks associated with water usage and ensuring that suppliers align with Harmony's broader water management and sustainability goals. Regulatory compliance: Ensuring that suppliers comply with local water regulations and other environmental standards is a key criterion for engagement. Harmony's water management strategy emphasizes the importance of compliance to avoid fines, ensure license retention, and maintain positive relations with regulatory bodies. Supplier performance improvement: Harmony works with suppliers to improve their environmental performance, including water management practices, to align with Harmony's sustainability targets and reduce overall environmental impact. In line with the criteria used to classify suppliers as having substantive dependencies and/or impacts relating to water: Harmony assesses and prioritizes suppliers based on their water dependencies and impacts, as part of their broader environmental and water management strategies.

[Fixed row]

(5.11.5) Do your suppliers have to meet environmental requirements as part of your organization's purchasing process?

Climate change

(5.11.5.1) Suppliers have to meet specific environmental requirements related to this environmental issue as part of the purchasing process

Select from:

☑ Yes, suppliers have to meet environmental requirements related to this environmental issue, but they are not included in our supplier contracts

(5.11.5.2) Policy in place for addressing supplier non-compliance

Select from:

✓ Yes, we have a policy in place for addressing non-compliance

(5.11.5.3) Comment

Harmony's suppliers and contractors are required to adhere to the code of conduct and engage with their suppliers on climate change actions. Suppliers and contractors are monitored through the contracting process as well as self-assessment. Where non-compliance or issue is identified, Harmony engages with the supplier or contractor on the matter.

Water

(5.11.5.1) Suppliers have to meet specific environmental requirements related to this environmental issue as part of the purchasing process

Select from:

✓ Yes, suppliers have to meet environmental requirements related to this environmental issue, but they are not included in our supplier contracts

(5.11.5.2) Policy in place for addressing supplier non-compliance

Select from:

✓ Yes, we have a policy in place for addressing non-compliance

(5.11.5.3) Comment

Harmony' suppliers and contractors are required to adhere to the code of conduct and engage with their suppliers on water security actions. This ensures that all parties within Harmony's value chain are committed to responsible water management. Suppliers and contractors are monitored through the contracting process as well as self-assessment. Where non-compliance is identified, Harmony engages with the supplier or contractor on the matter.

[Fixed row]

(5.11.6) Provide details of the environmental requirements that suppliers have to meet as part of your organization's purchasing process, and the compliance measures in place.

Climate change

(5.11.6.1) Environmental requirement

Select from:

☑ Disclosure of GHG emissions to your organization (Scope 1 and 2)

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

✓ Supplier self-assessment

(5.11.6.3) % tier 1 suppliers by procurement spend required to comply with this environmental requirement

Select from:

☑ 76-99%

(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement

Select from:

☑ 76-99%

(5.11.6.7) % tier 1 supplier-related scope 3 emissions attributable to the suppliers required to comply with this environmental requirement

Select from:

☑ 76-99%

(5.11.6.8) % tier 1 supplier-related scope 3 emissions attributable to the suppliers in compliance with this environmental requirement

Select from:

☑ 76-99%

(5.11.6.9) Response to supplier non-compliance with this environmental requirement

Select from:

☑ Retain and engage

(5.11.6.10) % of non-compliant suppliers engaged

Select from:

✓ Less than 1%

(5.11.6.11) Procedures to engage non-compliant suppliers

Select all that apply

✓ Providing information on appropriate actions that can be taken to address non-compliance

(5.11.6.12) Comment

Based on engagements through our supplier questionnaires, the large majority of our suppliers comply with and, regulatory requirements. Suppliers are monitored through the questionnaires as well as self-assessment, with non-compliance addressed through ongoing engagement while services are retained. Harmony's suppliers and contractors are required to adhere to the Code of Conduct and to engage their own suppliers on climate action, including carbon reduction and energy efficiency measures. This ensures that all parties across Harmony's value chain are aligned with responsible climate management. Suppliers and contractors are monitored through the contracting process as well as self-assessment to verify progress and identify areas for improvement.

Water

(5.11.6.1) Environmental requirement

0-	14	£	
Sei	lect	Iro	m:

✓ Total water withdrawal volumes reduction

(5.11.6.2) Mechanisms for monitoring compliance with this environmental requirement

Select all that apply

- ✓ First-party verification
- ☑ Grievance mechanism/ Whistleblowing hotline
- ✓ On-site third-party audit
- ☑ Supplier self-assessment

(5.11.6.3) % tier 1 suppliers by procurement spend required to comply with this environmental requirement

Select from:

✓ 76-99%

(5.11.6.4) % tier 1 suppliers by procurement spend in compliance with this environmental requirement

Select from:

☑ 76-99%

(5.11.6.5) % tier 1 suppliers with substantive environmental dependencies and/or impacts related to this environmental issue required to comply with this environmental requirement

Select from:

✓ 76-99%

(5.11.6.6) % tier 1 suppliers with substantive environmental dependencies and/or impacts related to this environmental issue that are in compliance with this environmental requirement

Select from:

76-99%

(5.11.6.9) Response to supplier non-compliance with this environmental requirement

Select from:

☑ Retain and engage

(5.11.6.10) % of non-compliant suppliers engaged

Select from:

✓ Less than 1%

(5.11.6.11) Procedures to engage non-compliant suppliers

Select all that apply

✓ Providing information on appropriate actions that can be taken to address non-compliance

(5.11.6.12) Comment

Based on engagements through our supplier questionnaires, the large majority of our suppliers comply with water-related regulatory requirements. Suppliers are monitored through the questionnaires as well as self-assessment. Where non-compliance is identified, Harmony continues to engage with the supplier while retaining their services. Harmony's suppliers and contractors are required to adhere to the code of conduct and engage with their suppliers on water security actions. This ensures that all parties within Harmony's value chain are committed to responsible water management. Suppliers and contractors are monitored through the contracting process as well as self-assessment.

[Add row]

(5.11.7) Provide further details of your organization's supplier engagement on environmental issues.

Climate change

(5.11.7.2) Action driven by supplier engagement

Select from:

☑ Emissions reduction

(5.11.7.3) Type and details of engagement

Capacity building

☑ Support suppliers to set their own environmental commitments across their operations

Innovation and collaboration

☑ Collaborate with suppliers on innovations to reduce environmental impacts in products and services

(5.11.7.4) Upstream value chain coverage

Select all that apply

☑ Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

☑ 100%

(5.11.7.6) % of tier 1 supplier-related scope 3 emissions covered by engagement

Select from:

100%

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

Harmony engages a wide range of stakeholders to advance climate change action across its operations, value chain, and host communities. Engagement is embedded in our Sustainable Development Framework and supported by board-level oversight. Through the Minerals Council South Africa and the Energy Intensive Users Group, Harmony advocates for enabling policies that support renewable energy procurement, grid access, and fair transition pathways. These engagements contribute to systemic change by promoting decarbonisation of the mining sector. Harmony engages suppliers through questionnaires, self-assessments, and contracting processes to ensure alignment with our Code of Conduct and climate action priorities. This includes expectations on energy efficiency, emissions management, and responsible sourcing. These efforts have delivered tangible results. Harmony has implemented over 200 energy efficiency projects that have saved ~2.2 Mt CO₂ since 2016, 43 optimization initiatives in FY24 alone saved 324 GWh and R532 million, and renewable projects are expanding our clean energy supply. Engagement with suppliers and communities has helped embed sustainability practices across the value chain, while our advocacy has influenced national debates on electricity reform and renewable policy

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

☑ Yes, please specify the environmental requirement :Meeting requirements of mining licenses

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

Yes

Water

(5.11.7.2) Action driven by supplier engagement

Select from:

☑ Total water withdrawal volumes reduction

(5.11.7.3) Type and details of engagement

Capacity building

☑ Other capacity building activity, please specify :Harmony sits on the Boards to several water utilities like Midvaal Water Company. Close working relationship with Rand Water and Bloemwater

Innovation and collaboration

☑ Encourage collaborative work in landscapes or jurisdictions

(5.11.7.4) Upstream value chain coverage

Select all that apply

✓ Tier 1 suppliers

(5.11.7.5) % of tier 1 suppliers by procurement spend covered by engagement

Select from:

☑ 100%

(5.11.7.7) % tier 1 suppliers with substantive impacts and/or dependencies related to this environmental issue covered by engagement

Select from:

☑ 100%

(5.11.7.9) Describe the engagement and explain the effect of your engagement on the selected environmental action

Harmony actively engages with all water utilities that supply our operations, fostering collaboration to ensure responsible water use and climate resilience. We serve on the boards of several utilities, such as the Midvaal Water Company, and maintain close working relationships with Rand Water and Bloemwater. These partnerships support proper governance and enable joint action on key themes including sustainable water management, environmental conservation, and the creation of resilient communities that underpin our social licence to operate. All contractors and suppliers are required to comply with Harmony's Water Management Standard and site-specific environmental management programmes aligned with water use licence conditions. By engaging with our suppliers and contractors, we ensure that our partners understand and adhere to minimum expectations for responsible water management and climate stewardship. The rationale is to conserve and use water efficiently while reducing operational risks, controlling procurement costs, and meeting commitments under our mining rights. Impact and measures of success: These engagements strengthen supplier relationships, establish a shared understanding of water-related and climate-change objectives, and enhance Harmony's credibility and trust across its supply chain. The beneficial outcomes created support our communities and ecosystems in which we operate. We assess success by monitoring the number of suppliers aligned with our human rights, environmental standards, code of ethics, and empowerment requirements. To date, no suppliers have been suspended, nor have we received grievances related to adverse environmental impacts.

(5.11.7.10) Engagement is helping your tier 1 suppliers meet an environmental requirement related to this environmental issue

Select from:

✓ Yes, please specify the environmental requirement :Meeting requirements of water use licenses.

(5.11.7.11) Engagement is helping your tier 1 suppliers engage with their own suppliers on the selected action

Select from:

✓ Yes

[Add row]

(5.11.9) Provide details of any environmental engagement activity with other stakeholders in the value chain.

Climate change

(5.11.9.1) Type of stakeholder

Select from:

☑ Other value chain stakeholder, please specify :Employees, host communities and local authorities

(5.11.9.2) Type and details of engagement

Education/Information sharing

- ☑ Educate and work with stakeholders on understanding and measuring exposure to environmental risks
- ☑ Run an engagement campaign to educate stakeholders about the environmental impacts about your products, goods and/or services

(5.11.9.3) % of stakeholder type engaged

Select from:

100%

(5.11.9.4) % stakeholder-associated scope 3 emissions

Select from:

✓ None

(5.11.9.5) Rationale for engaging these stakeholders and scope of engagement

We apply a three-tiered stakeholder engagement model that enables the company to stay connected and attuned to and have broad-based engagements with stakeholders who form part of our key stakeholder groupings. • Tier 1 includes engagements with host governments around permitting, licensing and regulatory matters, and alignment with and contribution to local, state/provincial and national developmental agendas. • Tier 2 constitutes engagements with landowners, first nations and traditional leaders, including but not limited to socioeconomic development and investment initiatives in host areas. • Tier 3 includes broad-based engagements with all other stakeholders affected by our exploration and mining activities, including non-governmental organisations (NGOs) and other community groups, to discuss and manage concerns, interests and expectations. Engagements with our key stakeholders are structured, and frequent, and guided by our values and strategic intent to: • Develop and maintain relationships founded on integrity, transparency and trust • Co-create with government and communities through collaborative partnerships • Balance and align our goals and stakeholders' interests and expectations • Establish accountability • Manage stakeholders' concerns, complaints and grievances • Support shared value creation and meaningful contribution towards broader socio-economic development economic and ESG issues.

(5.11.9.6) Effect of engagement and measures of success

Safety: • Improved safety initiatives, including golden controls monitoring, ongoing communication to raise awareness and encourage a more engaged and proactive safety culture, and visible felt safety leadership Communities, first nations, traditional leaders and NGOs: • Implementing our stakeholder management strategy and engagement plans, and revising them annually to ensure continued relevance • Delivering on our regulatory and agreement-related commitments to communities and our CSI programme in support of our commitment to socio-economic investment, and contributing to addressing our host communities' key socio-economic challenges, creating shared value. Our measures to ensure proactive engagements with communities include: • Planned structured engagements through an annual stakeholder engagement plan. • Targeted and issue-based meetings • Facilitated community dialogues • Regular updates to the community through variable communication mediums, including social media • Defined processes to raise concerns, complaints and grievances • Benchmarking, alignment, collaboration and partnership on community engagements and development with industry peers through resource sector peak bodies • Sessions to build the capacity of NGOs to address social needs that are not catered for by government services.

Water

(5.11.9.1) Type of stakeholder

Select from:

✓ Other value chain stakeholder, please specify: Employees, host communities and local authorities.

(5.11.9.2) Type and details of engagement

Education/Information sharing

- ☑ Educate and work with stakeholders on understanding and measuring exposure to environmental risks
- ☑ Run an engagement campaign to educate stakeholders about the environmental impacts about your products, goods and/or services

(5.11.9.3) % of stakeholder type engaged

Select from:

☑ 100%

(5.11.9.5) Rationale for engaging these stakeholders and scope of engagement

Harmony engages with various partners in the value chain. Harmony prioritises engagements with employees, surrounding communities and local and state government agencies specifically regarding water-related issues in South Africa, Papua New Guinea and Australia. Host community acceptance of Harmony's mines is key in maintaining social license to operate and is also important for the formation of partnerships with the community. Both Harmony's operational strategy and socio-environmental rehabilitation plan refer to responsible resource management and thus, the health and safety of employees and community members, as well as adherence to the regulations in the respective operating regions, are prioritised.

(5.11.9.6) Effect of engagement and measures of success

These engagements ensure that Harmony retains its social license to operate and minimises water related conflicts. Additionally, they ensure that all local regulations related to water are adhered to. Harmony measures success by comparing performance to targets. In South Africa, for example, the operations are measured in comparison to the group's targets and the South African Mining Charter. Furthermore, comparisons to the Social and Labour Plans are conducted as these plans invest heavily in improving water related challenges within the surrounding host communities. As such, Harmony's performance is assessed against mine community development, sustainable development and growth, up to date project implementation and implementation of approved environmental management plans. [Add row]

C6. Environmental Performance - Consolidation Approach

(6.1) Provide details on your chosen consolidation approach for the calculation of environmental performance data.

	Consolidation approach used	Provide the rationale for the choice of consolidation approach
Climate change	Select from: ☑ Operational control	This approach aligns with our financial and annual reporting.
Water	Select from: ☑ Operational control	This approach aligns with our financial and annual reporting.
Plastics	Select from: ☑ Operational control	This approach aligns with our financial and annual reporting.
Biodiversity	Select from: ✓ Operational control	This approach aligns with our financial and annual reporting.

[Fixed row]

C7. Environmental performance - Climate Change

(7.1) Is this your first year of reporting emissions data to CDP?

Select from:

Yes

(7.2) Select the name of the standard, protocol, or methodology you have used to collect activity data and calculate emissions.

Select all that apply

- ☑ The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard (Revised Edition)
- ☑ The Greenhouse Gas Protocol: Scope 2 Guidance
- ☑ The Greenhouse Gas Protocol: Corporate Value Chain (Scope 3) Standard

(7.3) Describe your organization's approach to reporting Scope 2 emissions.

(7.3.1) Scope 2, location-based

Select from:

☑ We are reporting a Scope 2, location-based figure

(7.3.2) Scope 2, market-based

Select from:

☑ We have no operations where we are able to access electricity supplier emission factors or residual emissions factors and are unable to report a Scope 2, market-based figure

(7.3.3) Comment

We purchase electricity directly from the grid in both South Africa and Papua New Guinea and do not currently record supplier specific emission factors nor do we calculate a market-based scope 2 figure.

[Fixed row]

(7.4) Are there any sources (e.g. facilities, specific GHGs, activities, geographies, etc.) of Scope 1, Scope 2 or Scope 3 emissions that are within your selected reporting boundary which are not included in your disclosure?

Select from:

✓ No

(7.5) Provide your base year and base year emissions.

Scope 1

(7.5.1) Base year end

06/29/2021

(7.5.2) Base year emissions (metric tons CO2e)

138651

(7.5.3) Methodological details

Harmony calculates its gross global Scope 1 greenhouse gas emissions in accordance with the GHG Protocol Corporate Accounting and Reporting Standard, applying the operational control consolidation approach. Scope 1 boundary and activity data: • Diesel (litres) • Petrol (litres) • Explosives (tonnes) •

Fuel/Heating oil (litres) – Chemwes • Fuel/Heating oil (litres) – Free State Activity data are compiled from fuel invoices and delivery notes, calibrated meters and telemetry, stock reconciliations, and explosives issue logs. Heating-oil consumption for Chemwes and the Free State is tracked and reported separately in Harmony's footprint reports and ESG data tables. Method and factors: Emissions are calculated as activity data multiplied by an emission factor and the appropriate global warming potential. Harmony accounts for carbon dioxide, methane, and nitrous oxide for these sources. For liquid fuels, litres are converted to mass or energy using fuel properties such as density and net calorific value. Emissions factors for fuels are sourced from the DEFRA database. For explosives, Harmony applies Australia National Greenhouse Accounts (NGA) Factors for the principal explosive types used to estimate detonation-related direct emissions; manufacturing of explosives is treated outside the organisational boundary in accordance with the Protocol's scopes framework. Emission-factor hierarchy: Consistent with GHG Protocol guidance, Harmony prioritises supplier- or site-specific factors and measured fuel properties, then country or region-specific factors from competent authorities, and finally internationally recognised sources that align with the GHG Protocol where local data are unavailable. This approach ensures transparent, accurate, and comparable reporting of Harmony's Scope 1 emissions while remaining fully aligned with the GHG Protocol.

Scope 2 (location-based)

(7.5.1) Base year end

06/29/2021

(7.5.2) Base year emissions (metric tons CO2e)

4757422

(7.5.3) Methodological details

Harmony calculates its gross global Scope 2 greenhouse gas emissions in accordance with the GHG Protocol Corporate Accounting and Reporting Standard and the GHG Protocol Scope 2 Guidance, applying the operational control consolidation approach. Scope Two boundary and activity data: The Scope 2 boundary covers grid-purchased electricity. Harmony purchases electricity from the national grids in South Africa and Papua New Guinea. Activity data are compiled from utility invoices, calibrated metering systems and telemetry, and site-level consumption records, with reconciliations to finance and operational logs. Method and factors: In line with the GHG Protocol, Harmony reports location-based emissions. Emissions are calculated as activity data multiplied by an emission factor and the appropriate global warming potential. The greenhouse gases accounted for are carbon dioxide, methane and nitrous oxide; biogenic carbon dioxide is not applicable to Scope 2 and is therefore excluded. Emission-factor hierarchy: Consistent with GHG Protocol guidance, Harmony prioritises supplier-specific emission factors and residual mixes that meet the Scope Two quality criteria, then country or region-specific grid factors from competent authorities, and finally internationally recognised sources that align with the GHG Protocol where local data are unavailable. When market-based data do not meet the quality criteria, Harmony discloses this and relies on the location-based method. This approach ensures transparent, accurate and comparable reporting of Harmony's Scope Two emissions while remaining fully aligned with the GHG Protocol.

Scope 3 category 1: Purchased goods and services

(7.5.1) Base year end

06/29/2021

(7.5.2) Base year emissions (metric tons CO2e)

320595

(7.5.3) Methodological details

Harmony calculates its Scope Three greenhouse gas emissions in alignment with the GHG Protocol Corporate Value Chain (Scope 3) Standard. The organisational boundary follows the operational control approach used for Scopes 1 and 2, while Scope 3 covers relevant value chain categories. Scope 3 categories and activity data. Harmony reports selected categories based on a materiality assessment and data availability, with a focus on Purchased Goods and Services (Category 1) for key inputs including cyanide, lime, explosives, cement, caustic soda, and timber/lumber. Activity data uses purchase quantities and specifications from procurement systems, supplier documentation (e.g., product technical sheets, EPDs where available), logistics invoices for inbound transport, contractor reports, and finance records. Method and factors: Emissions are calculated as activity data × emission factor, in line with the GHG Protocol. Harmony prioritises supplier-specific or product-specific factors (including measured properties and verified disclosures) where they meet the Protocol's quality criteria; where these are unavailable, Harmony applies appropriate country/region-specific or other recognised factors that are consistent with the GHG Protocol. When primary quantities are not available, Harmony may use hybrid or spend-based approaches, applying factors that align with the Protocol's data-quality hierarchy. For biogenic materials (e.g., timber/lumber), biogenic carbon is recorded and reported separately as required by the GHG Protocol. Data quality and improvement: The Scope 3 inventory is reviewed and updated as Harmony continues to map its value chain, improve supplier engagement, and expand category coverage. Changes in methods, factors, or GWPs adopted for the reporting year are disclosed, and where materially relevant, historical figures are recalculated in accordance with the GHG Protocol to preserve time-series comparability. This approach provides a transparent, decision-useful view of Harmony's indirect emissions beyon

Scope 3 category 3: Fuel-and-energy-related activities (not included in Scope 1 or 2)

(7.5.1) Base year end

06/29/2021

(7.5.2) Base year emissions (metric tons CO2e)

424962

(7.5.3) Methodological details

Harmony calculates its Scope 3 greenhouse gas emissions in alignment with the GHG Protocol Corporate Value Chain (Scope 3) Standard. The organisational boundary follows the operational control approach used for Scopes 1 and 2. Scope 3 categories are selected based on a materiality assessment and data availability, with methods and data quality consistent with GHG Protocol guidance. Fuel- and energy-related activities: Harmony accounts for Transmission & Distribution (T&D) losses associated with grid-purchased electricity in South Africa and Papua New Guinea, in line with the GHG Protocol. Activity data: Site electricity consumption (kWh) is compiled from utility invoices, calibrated meters and telemetry. Applicable grid loss rates are sourced from utilities or competent authorities; where unavailable, credible regional estimates aligned with the Protocol are used. Method: Emissions are calculated as purchased electricity × T&D loss rate × grid emission factor × GWP, consistent with the GHG Protocol Scope 2 Guidance treatment of upstream electricity. Harmony reports location-based T&D emissions; where high-quality supplier-specific data meet the Protocol's quality criteria, these may be used with transparent disclosure. Biogenic CO₂ is not applicable. Emission-factor hierarchy: In accordance with the GHG Protocol, Harmony prioritises supplier- or site-specific factors that meet quality criteria, then country/region-specific grid factors from competent authorities, and finally other recognised sources that align with the Protocol when local data are unavailable. Data quality and improvement: Harmony reviews its Scope 3 inventory periodically to refine data sources, loss-rate inputs and factor selection, and to improve category coverage. Changes in methods, factors or GWPs adopted for a reporting year are disclosed, and where materially relevant, historical figures are recalculated in accordance with the GHG Protocol to

preserve time-series comparability. This approach provides a transparent and decision-useful view of indirect emissions from upstream electricity beyond the operational boundary.

[Fixed row]

(7.6) What were your organization's gross global Scope 1 emissions in metric tons CO2e?

Reporting year

(7.6.1) Gross global Scope 1 emissions (metric tons CO2e)

179182

(7.6.3) Methodological details

Measurement approach: Scope 1 emissions are calculated based on the operational control consolidation approach, whereby the carbon footprint is calculated in accordance with The GHG Protocol Corporate Accounting Standard. Inputs: Scope 1 activity data is obtained through onsite information such as invoices and includes all fuel and refrigerants consumed. Emission factors: Emission factors used were obtained from the DEFRA 2024 and the Australia National Greenhouse Accounts (NGA) datasets. Rationale: This approach ensures that our GHG inventory adheres to the principles outlined in The GHG Protocol and that we transparently report our emissions to our stakeholders and investors. [Fixed row]

(7.7) What were your organization's gross global Scope 2 emissions in metric tons CO2e?

Reporting year

(7.7.1) Gross global Scope 2, location-based emissions (metric tons CO2e)

4086062

(7.7.4) Methodological details

Measurement approach: Scope 2 emissions are calculated based on the operational control consolidation approach, whereby the carbon footprint is calculated in accordance with The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard (Revised Edition) and The Greenhouse Gas Protocol: Scope 2 Guidance. Harmony does not have any specific contractual instruments and obtains all electricity from the national grids. As such a market-based Scope 2 value is not calculated. Inputs: Scope 2 activity data is obtained through onsite information such as electricity meters and invoices. Emission factors: Emission factors used

were obtained from the 2023 Eskom Annual report (SA grid) and the IGES grid emissions factors database (PNG grid).. Rationale: This approach ensures that our GHG inventory adheres to the principles outlined in The Greenhouse Gas Protocol and that we transparently report our emissions to our stakeholders and investors. [Fixed row]

(7.8) Account for your organization's gross global Scope 3 emissions, disclosing and explaining any exclusions.

Purchased goods and services

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

536963

(7.8.3) Emissions calculation methodology

Select all that apply

☑ Hybrid method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

50

(7.8.5) Please explain

Emission data sources: The purchased goods reported on include Timber, Lime, Cement, Caustic Soda, Cyanide, and Explosives. The data for these products was obtained from our suppliers and value chain partners. It was assumed that all the data obtained is relevant for the reporting period. Instances where no data was available, the values from previous reporting periods were assumed to still be relevant and, subsequently, incorporated in our calculations. Methodology: The hybrid method was used to calculate the emissions associated with these goods. If supplier specific information was not available, then the mass of the purchased goods was multiplied by the relevant emission factor. Emission factors were obtained from the CCalC v 1.1 database. Consistent with the GHG Protocol Guidance, GWP (100-year) values are drawn from the IPCC Fifth Assessment Report (AR5). Rationale for measurement approach: This approach ensures that our GHG inventory adheres to the principles outlined in The Greenhouse Gas Protocol: Corporate Value Chain (Scope 3) Standard and that we transparently report our emissions to our

stakeholders and investors. Verification of data: The emissions calculation and activity data were assured as part of our annual assurance processes. Boundary: The calculation covered all upstream emissions from these purchased goods and services (cradle to gate).

Capital goods

(7.8.1) Evaluation status

Select from:

☑ Relevant, not yet calculated

(7.8.5) Please explain

Harmony's Scope 3 boundary currently covers Categories 1, 3 and 6; Category 2 (Capital goods) is not yet quantified under the GHG Protocol due to data and methodological considerations typical for mining supply chains. The company will consider expanding coverage as data quality and relevance improve.

Fuel-and-energy-related activities (not included in Scope 1 or 2)

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

447032

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Emission data sources: The emissions in this category relates only to the Transmission and Distribution Losses associated with the South African and Papa New Guinea Grid Infrastructure. Methodology: The supplier specific method was used to calculate the emissions associated with the transmission and distribution losses associated with our grid electricity consumption. Emission factors were sourced from Eskom's Integrated Annual Report (2023) and Ecometrica Technical Reports in the case of electricity purchased from the Papa New Guinea grid. Consistent with the GHG Protocol Guidance, GWP (100-year) values are drawn from the IPCC Fifth

Assessment Report (AR5). Rationale for measurement approach: This approach ensures that our GHG inventory adheres to the principles outlined in The Greenhouse Gas Protocol: Corporate Value Chain (Scope 3) Standard and that we transparently report our emissions to our stakeholders and investors. Verification of data: The emissions calculation and activity data were assured as part of our annual assurance processes. Boundary: The T&D losses emissions were calculated on a cradle-to-gate basis.

Upstream transportation and distribution

(7.8.1) Evaluation status

Select from:

☑ Relevant, not yet calculated

(7.8.5) Please explain

Harmony's current Scope 3 boundary covers Categories 1, 3 and 6. Category 4 (Upstream transportation & distribution) is not yet quantified under the GHG Protocol, reflecting data and materiality considerations typical for multi-modal mining supply chains; upstream electricity T&D losses are accounted for under Category 3.

Waste generated in operations

(7.8.1) Evaluation status

Select from:

☑ Relevant, not yet calculated

(7.8.5) Please explain

Harmony's current Scope 3 boundary covers Categories 1, 3 and 6. Category 5 (Waste generated in operations) is not yet quantified under the GHG Protocol, as the company prioritises relevant categories and third-party waste-treatment data continue to mature; waste treated at Harmony-controlled facilities is accounted for in Scopes 1 or 2.

Business travel

(7.8.1) Evaluation status

Select from:

✓ Relevant, calculated

(7.8.2) Emissions in reporting year (metric tons CO2e)

6296

(7.8.3) Emissions calculation methodology

Select all that apply

Hybrid method

(7.8.4) Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

(7.8.5) Please explain

Emission data sources. This category covers employee business travel via car rental, commercial flights, and charter flights. Data sources were: (i) Avis supplier data for car rentals; (ii) travel-provider totals for commercial air travel outside PNG; (iii) PNG commercial flights supplier totals; and (iv) PNG charter flights fuel-use logs for ATR and Twin Otter aircraft. Methodology. We prioritised the supplier-specific method wherever available (Avis, commercial air travel, PNG flights). For PNG charter flights, we applied a fuel-based TTW (tank-to-wheel) method: litres of aviation turbine fuel × DEFRA 2024 aviation turbine fuel (direct combustion) factor (2.54 kg CO₂e per litre). This DEFRA factor represents direct combustion only and excludes WTT (well-to-tank) upstream emissions; DEFRA WTT factors were not applied. Unless a supplier explicitly provides upstream components, reported business-travel results therefore reflect TTW emissions. Radiative-forcing uplifts are not applied. Consistent with GHG Protocol guidance, GWP (100-year) values are drawn from the IPCC Fifth Assessment Report (AR5). Rationale for measurement approach. Using supplier-specific data and fuel-based calculations aligns with the GHG Protocol Corporate Value Chain (Scope 3) Standard, improves accuracy over spend-based estimates, and supports transparent reporting to stakeholders and investors. Verification of data. Activity data and calculations for this category were included in our annual assurance procedures. Boundary. Includes business travel undertaken by employees in FY2024 (car rentals, commercial flights, and PNG charter flights). Commuting (Scope 3 Category 7) and personal travel not reimbursed by the company are excluded.

Employee commuting

(7.8.1) Evaluation status

Select from:

☑ Relevant, not yet calculated

Harmony's current Scope 3 boundary covers Categories 1, 3 and 6. Category 7 (Employee commuting) is not yet quantified under the GHG Protocol, as the company prioritises relevant categories while commuting data collection and quality mature.

Upstream leased assets

(7.8.1) Evaluation status

Select from:

☑ Relevant, not yet calculated

(7.8.5) Please explain

Harmony's current Scope 3 boundary covers Categories 1, 3 and 6. Category 8 (Upstream leased assets) is not yet quantified. Harmony's current Scope 3 boundary covers Categories 1, 3 and 6. Category 9 (Downstream transportation & distribution) is not quantified under the GHG Protocol, as outbound third-party logistics after the point of sale are being phased in when reliable activity data becomes available.

Downstream transportation and distribution

(7.8.1) Evaluation status

Select from:

☑ Relevant, not yet calculated

(7.8.5) Please explain

Harmony's current Scope 3 boundary covers Categories 1, 3 and 6. Category 9 (Downstream transportation & distribution) is not quantified under the GHG Protocol, as outbound third-party logistics after the point of sale are being phased in when reliable activity data becomes available.

Processing of sold products

(7.8.1) Evaluation status

Select from:

☑ Relevant, not yet calculated

Harmony's current Scope 3 boundary covers Categories 1, 3 and 6. Category 10 (Processing of sold products) is not quantified under the GHG Protocol, reflecting low assessed materiality and limited downstream processing data.

Use of sold products

(7.8.1) Evaluation status

Select from:

☑ Relevant, not yet calculated

(7.8.5) Please explain

Harmony's current Scope 3 boundary covers Categories 1, 3 and 6. Category 11 (Use of sold products) is not quantified under the GHG Protocol, as the use phase of gold is considered to have negligible direct emissions.

End of life treatment of sold products

(7.8.1) Evaluation status

Select from:

☑ Relevant, not yet calculated

(7.8.5) Please explain

Harmony's current Scope 3 boundary covers Categories 1, 3 and 6. Category 12 (End-of-life treatment of sold products) is not quantified under the GHG Protocol, as gold is typically retained or recycled and therefore end of life treatment emissions are minimal.

Downstream leased assets

(7.8.1) Evaluation status

Select from:

☑ Relevant, not yet calculated

Harmony's current Scope 3 boundary covers Categories 1, 3 and 6. Category 13 (Downstream leased assets) is not yet quantified under the GHG Protocol, as no material assets leased out by Harmony are currently in scope.

Franchises

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

Harmony's current Scope 3 boundary covers Categories 1, 3 and 6. Category 14 (Franchises) is not quantified under the GHG Protocol, as Harmony does not operate a franchising model.

Investments

(7.8.1) Evaluation status

Select from:

☑ Relevant, not yet calculated

(7.8.5) Please explain

Harmony's current Scope 3 boundary covers Categories 1, 3 and 6. Category 15 (Investments) is not quantified under the GHG Protocol, as it is not material to Harmony's current boundary.

Other (upstream)

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

Harmony's current Scope 3 boundary covers Categories 1, 3 and 6. Other (upstream) is not applicable under the GHG Protocol, which defines 15 fixed categories; no additional upstream sources beyond these are disclosed.

Other (downstream)

(7.8.1) Evaluation status

Select from:

✓ Not relevant, explanation provided

(7.8.5) Please explain

Harmony's current Scope 3 boundary covers Categories 1, 3 and 6. Other (downstream) is not applicable under the GHG Protocol, which defines 15 fixed categories; no additional downstream sources beyond these are disclosed.

[Fixed row]

(7.9) Indicate the verification/assurance status that applies to your reported emissions.

	Verification/assurance status
Scope 1	Select from: ☑ Third-party verification or assurance process in place
Scope 2 (location-based or market-based)	Select from: ☑ Third-party verification or assurance process in place
Scope 3	Select from: ☑ Third-party verification or assurance process in place

[Fixed row]

(7.9.1) Provide further details of the verification/assurance undertaken for your Scope 1 emissions, and attach the relevant statements.

Row 1

(7.9.1.1) Verification or assurance cycle in place

Select from:

✓ Annual process

(7.9.1.2) Status in the current reporting year

Select from:

Complete

(7.9.1.3) Type of verification or assurance

Select from:

✓ Limited assurance

(7.9.1.4) Attach the statement

HAR-GHG-Assurance-Certificates.pdf

(7.9.1.5) Page/section reference

ΑII

(7.9.1.6) Relevant standard

Select from:

✓ ISAE3000

(7.9.1.7) Proportion of reported emissions verified (%)

(7.9.2) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements.

Row 1

(7.9.2.1) Scope 2 approach

Select from:

✓ Scope 2 location-based

(7.9.2.2) Verification or assurance cycle in place

Select from:

Annual process

(7.9.2.3) Status in the current reporting year

Select from:

Complete

(7.9.2.4) Type of verification or assurance

Select from:

☑ Reasonable assurance

(7.9.2.5) Attach the statement

HAR-GHG-Assurance-Certificates.pdf

(7.9.2.6) Page/ section reference

(7.9.2.7) Relevant standard

Select from:

✓ ISAE3000

(7.9.2.8) Proportion of reported emissions verified (%)

100 [Add row]

(7.9.3) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements.

Row 1

(7.9.3.1) Scope 3 category

Select all that apply

☑ Scope 3: Purchased goods and services

☑ Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2)

✓ Scope 3: Business travel

(7.9.3.2) Verification or assurance cycle in place

Select from:

✓ Annual process

(7.9.3.3) Status in the current reporting year

Select from:

Complete

(7.9.3.4) Type of verification or assurance

Select from:

✓ Limited assurance

(7.9.3.5) Attach the statement

HAR-GHG-Assurance-Certificates.pdf

(7.9.3.6) Page/section reference

ΑII

(7.9.3.7) Relevant standard

Select from:

☑ ISAE3000

(7.9.3.8) Proportion of reported emissions verified (%)

100 [Add row]

(7.10) How do your gross global emissions (Scope 1 and 2 combined) for the reporting year compare to those of the previous reporting year?

Select from:

Decreased

(7.10.1) Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined), and for each of them specify how your emissions compare to the previous year.

Change in renewable energy consumption

(7.10.1.1) Change in emissions (metric tons CO2e)

59600

(7.10.1.2) Direction of change in emissions

Select from:

Decreased

(7.10.1.3) Emissions value (percentage)

1.34

(7.10.1.4) Please explain calculation

Harmony's emissions reductions from renewables rose from $5800 \text{ tCO}_2\text{e}$ (FY23) to $65400 \text{ tCO}_2\text{e}$ (FY24), an incremental decrease of $59,600 \text{ tCO}_2\text{e}$; with previous year Scope $1+2=4452514 \text{ tCO}_2\text{e}$, the Emissions value (percentage) is $59600/4452514 \times 100=1.34$.

Other emissions reduction activities

(7.10.1.1) Change in emissions (metric tons CO2e)

5800

(7.10.1.2) Direction of change in emissions

Select from:

✓ Decreased

(7.10.1.3) Emissions value (percentage)

0.13

(7.10.1.4) Please explain calculation

Our high impact initiatives in FY24 include refurbishing underground turbines, adding reverse-running pump installations, optimised control of main fans using variable speed drives (VSDs) and inlet guide vanes (IGVs), refrigeration upgrades (infrastructure, water-control valves), tighter control of dewatering and refrigeration systems and power-factor correction. As a result, our energy savings initiatives, not including renewable energy, decreased our emissions with 5800 tCO2e in FY24. Given that our previous year Scope 1+2 = 4452514 tCO₂e, the emissions value (percentage) are calculated as 5800 / 4452514 x 100 = 0.13. [Fixed row]

(7.12) Are carbon dioxide emissions from biogenic carbon relevant to your organization?

Select from:

✓ No

(7.15) Does your organization break down its Scope 1 emissions by greenhouse gas type?

Select from:

Yes

(7.15.1) Break down your total gross global Scope 1 emissions by greenhouse gas type and provide the source of each used global warming potential (GWP).

Row 1

(7.15.1.1) **Greenhouse** gas

Select from:

CO2

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

177032

(7.15.1.3) **GWP** Reference

Select from:

☑ IPCC Fifth Assessment Report (AR5 – 100 year)

Row 2

(7.15.1.1) **Greenhouse** gas

Select from:

✓ CH4

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

33

(7.15.1.3) **GWP** Reference

Select from:

✓ IPCC Fifth Assessment Report (AR5 – 100 year)

Row 3

(7.15.1.1) **Greenhouse** gas

Select from:

☑ N20

(7.15.1.2) Scope 1 emissions (metric tons of CO2e)

2111

(7.15.1.3) **GWP** Reference

Select from:

☑ IPCC Fifth Assessment Report (AR5 – 100 year) [Add row]

(7.16) Break down your total gross global Scope 1 and 2 emissions by country/area.

	Scope 1 emissions (metric tons CO2e)	Scope 2, location-based (metric tons CO2e)	Scope 2, market-based (metric tons CO2e)
Australia	0	0	0
Papua New Guinea	126937	51664	0
South Africa	52244	4034389	0

[Fixed row]

(7.17) Indicate which gross global Scope 1 emissions breakdowns you are able to provide.

Select all that apply

☑ By business division

(7.17.1) Break down your total gross global Scope 1 emissions by business division.

	Business division	Scope 1 emissions (metric ton CO2e)
Row 1	Harmony Gold Operations	179182

[Add row]

(7.19) Break down your organization's total gross global Scope 1 emissions by sector production activity in metric tons CO2e.

Metals and mining production activities

(7.19.1) Gross Scope 1 emissions, metric tons CO2e

(7.19.3) Comment

This disclosure is group-wide for the Harmony Gold corporate division and includes all Scope 1 emissions, which are wholly attributable to metals and mining production activities under the operational control approach of the GHG Protocol Corporate Accounting and Reporting Standard. The activity boundary covers all direct, mining-dependent sources at our mining and processing sites across the Group (e.g., stationary and mobile fuel combustion and explosives detonation), with no exclusions. Harmony does not operate other sector production activities (e.g., cement production), so there are no Scope 1 emissions to allocate to other sector rows. Our accounting follows the GHG Protocol and we do not apply additional sector-specific guidelines.

[Fixed row]

(7.20) Indicate which gross global Scope 2 emissions breakdowns you are able to provide.

Select all that apply

☑ By business division

(7.20.1) Break down your total gross global Scope 2 emissions by business division.

	Business division	Scope 2, location-based (metric tons CO2e)
Row 1	Harmony Gold Operations	4086062

[Add row]

(7.21) Break down your organization's total gross global Scope 2 emissions by sector production activity in metric tons CO2e.

Metals and mining production activities

(7.21.1) Scope 2, location-based, metric tons CO2e

(7.21.3) Comment

This disclosure is group-wide for the Harmony Gold corporate division and includes all Scope 2 emissions under the operational control approach of the GHG Protocol Corporate Accounting and Reporting Standard and GHG Protocol Scope 2 Guidance. The activity boundary covers grid-purchased electricity for all operations under our control, which include mining and processing sites as well as administrative facilities across the Group. We report location-based Scope 2 only because the market-based method requires qualifying contractual instruments and data (e.g. residual mixes) that aren't yet consistently available across our South Africa and PNG operations. To avoid double counting and unreliable claims, we disclose a single, comparable grid-average result; behind-the-meter generation simply reduces purchased kWh.

[Fixed row]

(7.22) Break down your gross Scope 1 and Scope 2 emissions between your consolidated accounting group and other entities included in your response.

Consolidated accounting group

(7.22.1) Scope 1 emissions (metric tons CO2e)

179182

(7.22.2) Scope 2, location-based emissions (metric tons CO2e)

4086062

(7.22.4) Please explain

Harmony reports all emissions from the entities under its operational control within the consolidated accounting group. Emission sources deemed immaterial are excluded, in line with the materiality thresholds permitted under the GHG Protocol.

All other entities

(7.22.1) Scope 1 emissions (metric tons CO2e)

0

(7.22.2) Scope 2, location-based emissions (metric tons CO2e)

0

(7.22.4) Please explain

Harmony reports all its emissions under the consolidated accounting group. [Fixed row]

(7.23) Is your organization able to break down your emissions data for any of the subsidiaries included in your CDP response?

Select from:

✓ No

(7.29) What percentage of your total operational spend in the reporting year was on energy?

Select from:

✓ More than 10% but less than or equal to 15%

(7.30) Select which energy-related activities your organization has undertaken.

	Indicate whether your organization undertook this energy-related activity in the reporting year
Consumption of fuel (excluding feedstocks)	Select from: ✓ Yes
Consumption of purchased or acquired electricity	Select from: ✓ Yes
Consumption of purchased or acquired heat	Select from:

	Indicate whether your organization undertook this energy-related activity in the reporting year
	✓ No
Consumption of purchased or acquired steam	Select from: ☑ No
Consumption of purchased or acquired cooling	Select from: ☑ No
Generation of electricity, heat, steam, or cooling	Select from: ✓ Yes

[Fixed row]

(7.30.1) Report your organization's energy consumption totals (excluding feedstocks) in MWh.

Consumption of fuel (excluding feedstock)

(7.30.1.1) Heating value

Select from:

✓ LHV (lower heating value)

(7.30.1.2) MWh from renewable sources

0

(7.30.1.3) MWh from non-renewable sources

695613

(7.30.1.4) Total (renewable + non-renewable) MWh

Consumption of purchased or acquired electricity

(7.30.1.1) Heating value

Select from:

✓ Unable to confirm heating value

(7.30.1.2) MWh from renewable sources

629349

(7.30.1.3) MWh from non-renewable sources

3545373

(7.30.1.4) Total (renewable + non-renewable) MWh

4174722.00

Consumption of self-generated non-fuel renewable energy

(7.30.1.1) Heating value

Select from:

✓ LHV (lower heating value)

(7.30.1.2) MWh from renewable sources

797

(7.30.1.4) Total (renewable + non-renewable) MWh

797.00

Total energy consumption

(7.30.1.1) **Heating value**

Select from:

✓ LHV (lower heating value)

(7.30.1.2) MWh from renewable sources

630146

(7.30.1.3) MWh from non-renewable sources

4240985

(7.30.1.4) Total (renewable + non-renewable) MWh

4871131.00 [Fixed row]

(7.30.4) Report your organization's energy consumption totals (excluding feedstocks) for metals and mining production activities in MWh.

	Heating value	Total MWh
Consumption of fuel (excluding feedstocks)	Select from: ✓ LHV (lower heating value)	695613
Consumption of purchased or acquired electricity	Select from: ✓ Unable to confirm heating value	4174721

	Heating value	Total MWh
Consumption of self-generated non-fuel renewable energy	Select from: ✓ Unable to confirm heating value	797
Total energy consumption	Select from: ✓ Unable to confirm heating value	4871131

[Fixed row]

(7.30.6) Select the applications of your organization's consumption of fuel.

	Indicate whether your organization undertakes this fuel application
Consumption of fuel for the generation of electricity	Select from: ✓ Yes
Consumption of fuel for the generation of heat	Select from: ✓ Yes
Consumption of fuel for the generation of steam	Select from: ☑ No
Consumption of fuel for the generation of cooling	Select from: ☑ No
Consumption of fuel for co-generation or tri-generation	Select from: ✓ No

[Fixed row]

(7.30.7) State how much fuel in MWh your organization has consumed (excluding feedstocks) by fuel type.

Sustainable biomass

(7.30.7.1) Heating value

Select from:

✓ Unable to confirm heating value

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.8) Comment

Harmony does not consume sustainable biomass

Other biomass

(7.30.7.1) Heating value

Select from:

✓ Unable to confirm heating value

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.8) Comment

Harmony does not consume other biomass fuels

Other renewable fuels (e.g. renewable hydrogen)

(7.30.7.1) Heating value

Select from:

✓ Unable to confirm heating value

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.8) Comment

Harmony does not consume other renewable fuels

Coal

(7.30.7.1) Heating value

Select from:

✓ Unable to confirm heating value

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

O

(7.30.7.8) Comment

Harmony does not consume coal

Oil

(7.30.7.1) Heating value

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

695613

(7.30.7.3) MWh fuel consumed for self-generation of electricity

31603

(7.30.7.4) MWh fuel consumed for self-generation of heat

664009

(7.30.7.8) Comment

Fuel oil 180 and 181, together with diesel, are used for generating heat with boilers for gold processing. Petrol used in mobile consumption (e.g. for transportation and equipment) is captured under the fuel consumption for the self-generation of heat. Diesel consumed for the generation of electricity are appropriately assigned.

Gas

(7.30.7.1) Heating value

Select from:

✓ Unable to confirm heating value

(7.30.7.2) Total fuel MWh consumed by the organization

0

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.8) Comment

Harmony does not consume gas

Other non-renewable fuels (e.g. non-renewable hydrogen)

(7.30.7.1) **Heating value**

Sel	lect	from:	
00	-cc	non.	

✓ Unable to confirm heating value

(7.30.7.2) Total fuel MWh consumed by the organization

n

(7.30.7.3) MWh fuel consumed for self-generation of electricity

0

(7.30.7.4) MWh fuel consumed for self-generation of heat

0

(7.30.7.8) Comment

Harmony does not consume other non-renewables fuels

Total fuel

(7.30.7.1) Heating value

Select from:

✓ LHV

(7.30.7.2) Total fuel MWh consumed by the organization

695613

(7.30.7.3) MWh fuel consumed for self-generation of electricity

31603

(7.30.7.4) MWh fuel consumed for self-generation of heat

(7.30.7.8) Comment

Only fuel only is consumed by Harmony. [Fixed row]

(7.30.9) Provide details on the electricity, heat, steam, and cooling your organization has generated and consumed in the reporting year.

Electricity

(7.30.9.1) Total Gross generation (MWh)

32400

(7.30.9.2) Generation that is consumed by the organization (MWh)

31603

(7.30.9.3) Gross generation from renewable sources (MWh)

797

(7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh)

797

Heat

(7.30.9.1) Total Gross generation (MWh)

664009

(7.30.9.2) Generation that is consumed by the organization (MWh)

(7.30.9.3) Gross generation from renewable sources (MWh) (7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh) 0 **Steam** (7.30.9.1) Total Gross generation (MWh) (7.30.9.2) Generation that is consumed by the organization (MWh) 0 (7.30.9.3) Gross generation from renewable sources (MWh) (7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh) 0 Cooling (7.30.9.1) Total Gross generation (MWh) (7.30.9.2) Generation that is consumed by the organization (MWh)

(7.30.9.3) Gross generation from renewable sources (MWh)

0

(7.30.9.4) Generation from renewable sources that is consumed by the organization (MWh)

0 [Fixed row]

(7.30.12) Provide details on the electricity, heat, steam, and cooling your organization has generated and consumed for metals and mining production activities.

	Total gross generation (MWh) inside metals and mining sector boundary	Generation that is consumed (MWh) inside metals and mining sector boundary
Electricity	32400	32400
Heat	664009	664009
Steam	0	0
Cooling	0	0

[Fixed row]

(7.30.16) Provide a breakdown by country/area of your electricity/heat/steam/cooling consumption in the reporting year.

Australia

(7.30.16.1) Consumption of purchased electricity (MWh)

(7.30.16.2) Consumption of self-generated electricity (MWh)
0
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
0
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)
0.00
Papua New Guinea
(7.30.16.1) Consumption of purchased electricity (MWh)
76089
(7.30.16.2) Consumption of self-generated electricity (MWh)
25079
(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)
0
(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)
476508
(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

South Africa

(7.30.16.1) Consumption of purchased electricity (MWh)

4098632

(7.30.16.2) Consumption of self-generated electricity (MWh)

7321

(7.30.16.4) Consumption of purchased heat, steam, and cooling (MWh)

0

(7.30.16.5) Consumption of self-generated heat, steam, and cooling (MWh)

187501

(7.30.16.6) Total electricity/heat/steam/cooling energy consumption (MWh)

4293454.00

[Fixed row]

(7.42) Provide details on the commodities relevant to the mining production activities of your organization.

Row 1

(7.42.1) Output product

Select from:

✓ Gold

(7.42.2) Capacity, metric tons

(7.42.3) Production, metric tons

48.58

(7.42.4) Production, copper-equivalent units (metric tons)

375617

(7.42.5) Scope 1 emissions

179182

(7.42.6) Scope 2 emissions

4086062

(7.42.8) Pricing methodology for copper-equivalent figure

The copper equivalent for gold production was determined by multiplying the tonnes of gold produced in FY2024 (48.58 tonnes) by the price of gold on 31 December 2023 (\$83,779,985.82 per metric), divided by the price of copper on 31 December 2024 (\$8,912.6 per metric ton).

(7.42.9) Comment

The capacity (metric tons) was determined as the total amount of ore processed divided by the average mineral grade (which also takes into account the plant recovery rate). Scope 1 and 2 emissions are given for all our operations as we are not reporting emissions associated with each commodity at this time.

Row 2

(7.42.1) Output product

Select from:

✓ Silver

(7.42.2) Capacity, metric tons

(7.42.3) Production, metric tons

114.24

(7.42.4) Production, copper-equivalent units (metric tons)

11095

(7.42.5) Scope 1 emissions

179182

(7.42.6) Scope 2 emissions

4086062

(7.42.8) Pricing methodology for copper-equivalent figure

The copper equivalent for silver production was determined by multiplying the tonnes of silver produced in FY2024 (114.24 tonnes) by the price of silver on 31 June 2024 (\$83,779,985.82 per metric), divided by the price of copper on 31 June 2024 (\$8,912.6 per metric ton).

(7.42.9) Comment

The capacity (metric tons) was determined as the total amount of ore processed divided by the average mineral grade (which also takes into account the plant recovery rate). Scope 1 and 2 emissions are given for all our operations as we are not reporting emissions associated with each commodity at this time. [Add row]

(7.42.1) Provide details on the commodities relevant to the metals production activities of your organization.

Row 1

(7.42.1.1) Output product

Select from:

Gold

(7.42.1.2) Capacity (metric tons)

63.3

(7.42.1.3) Production (metric tons)

48.58

(7.42.1.4) Annual production in copper-equivalent units (thousand tons)

375601

(7.42.1.5) Scope 1 emissions (metric tons CO2e)

179182

(7.42.1.6) Scope 2 emissions (metric tons CO2e)

4086062

(7.42.1.8) Pricing methodology for-copper equivalent figure

The copper equivalent for doré production was determined by converting gold using the same pricing basis. The tonnes of gold produced in FY2024 (48.58 t) was multiplied by the applicable gold price for the chosen period and divided by the copper price for the same period.

(7.42.1.9) Comment

Doré from our operations contains only gold and silver; we do not produce separate gold or silver bullion bars on site (doré is refined offsite by third-party refineries). The capacity (metric tons) is calculated from ore processed and the average recovered grade (head grade × plant recovery). The capacity and production values reported for doré therefore represent the sum of the contained gold and silver capacities and productions. Scope 1 and Scope 2 emissions are reported at the operational level; we are not allocating emissions to individual commodities at this time.

[Add row]

(7.45) Describe your gross global combined Scope 1 and 2 emissions for the reporting year in metric tons CO2e per unit currency total revenue and provide any additional intensity metrics that are appropriate to your business operations.

Row 1

(7.45.1) Intensity figure

0.00007

(7.45.2) Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)

4265244

(7.45.3) Metric denominator

Select from:

✓ unit total revenue

(7.45.4) Metric denominator: Unit total

61379000000

(7.45.5) Scope 2 figure used

Select from:

✓ Location-based

(7.45.6) % change from previous year

23

(7.45.7) Direction of change

Select from:

Decreased

(7.45.8) Reasons for change

Select all that apply

- ☑ Change in renewable energy consumption
- ✓ Other emissions reduction activities

(7.45.9) Please explain

Harmony's total energy intensity decreased in FY24, driven by continued execution of energy-efficiency projects across shafts and plants (process optimisation, improved scheduling, and load management), a 32% year-on-year increase in annual energy saved, and greater renewable electricity consumption via solar PPAs, which reduced reliance on South Africa's carbon-intensive grid. Group revenue rose 25% to R61.4bn (from R49.3bn), supported by a 16% increase in the average gold price. As a result, revenue-based energy-intensity metrics improved partly due to price tailwinds, independent of operational savings.

Row 2

(7.45.1) Intensity figure

2.73

(7.45.2) Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)

4265244

(7.45.3) Metric denominator

Select from:

✓ ounce of gold

(7.45.4) Metric denominator: Unit total

1562000

(7.45.5) Scope 2 figure used

Select from:

✓ Location-based

(7.45.6) % change from previous year

4

(7.45.7) Direction of change

Select from:

Decreased

(7.45.8) Reasons for change

Select all that apply

- ☑ Change in renewable energy consumption
- ✓ Other emissions reduction activities

(7.45.9) Please explain

Harmony's total energy intensity decreased in FY24, driven by continued execution of energy-efficiency projects across shafts and plants (process optimization, improved scheduling, and load management), a 32% year-on-year increase in annual energy saved and greater renewable electricity consumption via solar PPAs, which reduced reliance on South Africa's carbon-intensive grid.

[Add row]

(7.52) Provide any additional climate-related metrics relevant to your business.

Row 1

(7.52.1) Description

Select from:

☑ Energy usage

(7.52.2) Metric value

(7.52.3) Metric numerator

4840000

(7.52.4) Metric denominator (intensity metric only)

1562000

(7.52.5) % change from previous year

6.34

(7.52.6) Direction of change

Select from:

Decreased

(7.52.7) Please explain

Metric reported: total energy usage per ounce produced (MWh/oz) Direction of change: Decreased year on year (vs FY23). Additional information: Harmony's total energy intensity decreased in FY24, driven by continued execution of energy-efficiency projects across shafts and plants (process optimization, improved scheduling, and load management), a 32% year-on-year increase in annual energy saved.

[Add row]

(7.53) Did you have an emissions target that was active in the reporting year?

Select all that apply

✓ Absolute target

(7.53.1) Provide details of your absolute emissions targets and progress made against those targets.

Row 1

(7.53.1.1) Target reference number

✓ Abs 1

(7.53.1.2) Is this a science-based target?

Select from:

☑ Yes, and this target has been approved by the Science Based Targets initiative

(7.53.1.3) Science Based Targets initiative official validation letter

Harmony Gold Mining Company Ltd SBTi Certificate.pdf

(7.53.1.4) Target ambition

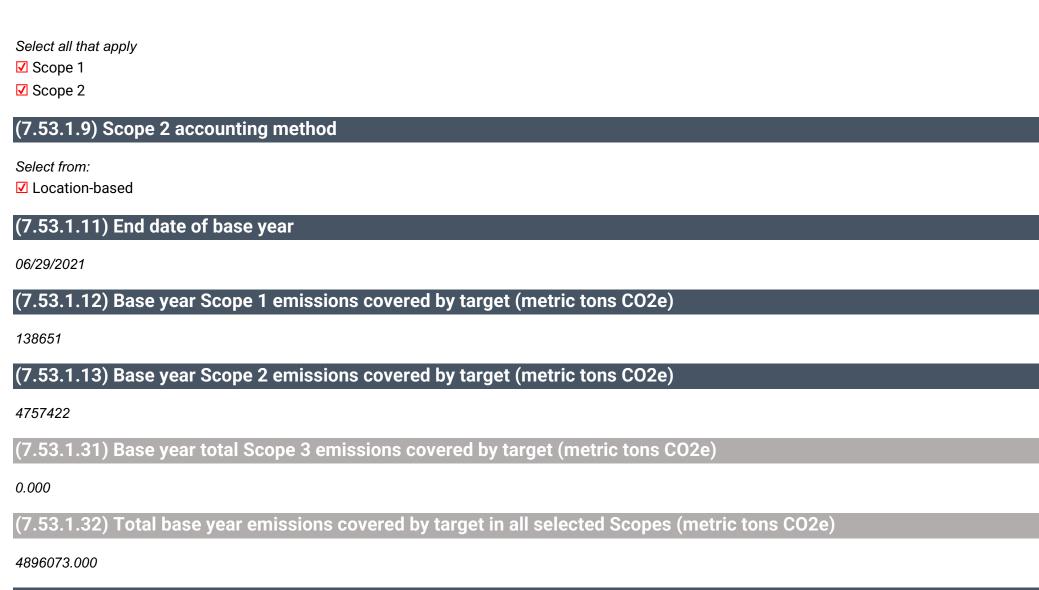
Select from:

(7.53.1.5) Date target was set

02/22/2023

(7.53.1.6) Target coverage

Select from:


✓ Organization-wide

(7.53.1.7) Greenhouse gases covered by target

Select all that apply

- ✓ Carbon dioxide (CO2)
- ✓ Methane (CH4)
- ✓ Nitrous oxide (N2O)

(7.53.1.8) Scopes

(7.53.1.33) Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1

100

(7.53.1.34) Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2

100

(7.53.1.53) Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes

100

(7.53.1.54) End date of target

06/29/2036

(7.53.1.55) Targeted reduction from base year (%)

63

(7.53.1.56) Total emissions at end date of target covered by target in all selected Scopes (metric tons CO2e)

1811547.010

(7.53.1.57) Scope 1 emissions in reporting year covered by target (metric tons CO2e)

179182

(7.53.1.58) Scope 2 emissions in reporting year covered by target (metric tons CO2e)

4086062

(7.53.1.77) Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)

4265244.000

(7.53.1.78) Land-related emissions covered by target

Select from:

✓ No, it does not cover any land-related emissions (e.g. non-FLAG SBT)

(7.53.1.79) % of target achieved relative to base year

(7.53.1.80) Target status in reporting year

Select from:

Underway

(7.53.1.82) Explain target coverage and identify any exclusions

This target covers all operations that Harmony retains operational control over (organisation wide). The targets set are based on the GHG Protocol, the Paris agreement and STBi Guidelines. The target has been submitted to the SBTi and was validated in FY2023. The Paris Agreement is based on climate science that requires decarbonisation to net zero by 2050. Our financial year target aligns with this science by covering Scope 1 and 2 emissions and aims for a 63% reduction in emissions by 2036 from our FY2021 base.

(7.53.1.83) Target objective

The objective to reduce our absolute emissions is a critical component of our broader sustainability strategy. The company is committed to reducing its scope 1 and 2 greenhouse gas emissions by 63% from a 2021 baseline. The target forms part of our overall decarbonisation strategy, which does not include a net zero target at this time.

(7.53.1.84) Plan for achieving target, and progress made to the end of the reporting year

Harmony plans to meet its SBTi-aligned target mainly by shifting load to a much larger renewables program in South Africa by expanding from 363 MW to 583 MW by FY26, and potentially adding another 200 MW of short-term PPAs by FY28. This is combined with energy-efficiency programs, complemented by evaluated options like gas/LNG, storage and wheeling, while benefitting from gradual grid decarbonization. By end-FY24, Harmony has achieved R2.24 bn cumulative savings and 2.1 million tCO₂e avoided from efficiency since 2016. So, by FY24 Harmony has achieved a 20.45% reduction from its 2021 base year.

(7.53.1.85) Target derived using a sectoral decarbonization approach

Select from:

✓ No

[Add row]

(7.54) Did you have any other climate-related targets that were active in the reporting year?

Select all that apply

✓ No other climate-related targets

(7.55) Did you have emissions reduction initiatives that were active within the reporting year? Note that this can include those in the planning and/or implementation phases.

Select from:

Yes

(7.55.1) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings.

	Number of initiatives	Total estimated annual CO2e savings in metric tonnes CO2e
Under investigation	0	`Numeric input
To be implemented	20	32500
Implementation commenced	6	9750
Implemented	35	101362
Not to be implemented	0	`Numeric input

[Fixed row]

(7.55.2) Provide details on the initiatives implemented in the reporting year in the table below.

Row 1

(7.55.2.1) Initiative category & Initiative type

Energy efficiency in production processes

✓ Process optimization

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

52362

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (location-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

✓ Voluntary

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

79098427

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

27560000

(7.55.2.7) Payback period

Select from:

✓ No payback

(7.55.2.8) Estimated lifetime of the initiative

Select from:

Ongoing

(7.55.2.9) Comment

The Energy efficiency in production processes category at Harmony includes a wide range of operational improvements that target core energy-intensive systems across mines. Key interventions focus on compressed air systems, where optimised compressor clipping and auxiliary cooling upgrades reduce unnecessary load and improve efficiency. Similarly, large-scale upgrades to ventilation and fan systems deliver significant savings through improved fan combinations, variable guide vane adjustments, and decommissioning of redundant fans. Refrigeration systems also feature prominently, with improved peak clipping and smarter control philosophies lowering demand during high-cost periods. Pumping systems achieve load shifts that move electricity use to off-peak periods, reducing both energy intensity and costs. These projects are complemented by efficiency gains in motors and drives, as well as process optimisation using automation and smart controls. Collectively, these systems account for more than 52,000 tCO₂e in annual savings, representing both environmental benefits and substantial financial savings. They also highlight the importance of optimising existing infrastructure before investing in new low-carbon technologies. Overall, the portfolio demonstrates how targeted technical interventions in production processes can unlock material emissions reductions, lower operating costs, and strengthen long-term operational resilience in the mining sector.

Row 2

(7.55.2.1) Initiative category & Initiative type

Low-carbon energy generation

✓ Solar PV

(7.55.2.2) Estimated annual CO2e savings (metric tonnes CO2e)

49000

(7.55.2.3) Scope(s) or Scope 3 category(ies) where emissions savings occur

Select all that apply

✓ Scope 2 (location-based)

(7.55.2.4) Voluntary/Mandatory

Select from:

Mandatory

(7.55.2.5) Annual monetary savings (unit currency – as specified in 1.2)

65700000

(7.55.2.6) Investment required (unit currency – as specified in 1.2)

500000000

(7.55.2.7) Payback period

Select from:

✓ No payback

(7.55.2.8) Estimated lifetime of the initiative

Select from:

Ongoing

(7.55.2.9) Comment

Sungazer PV Phase 1 is Harmony Gold's foundational renewable tranche and the proof-of-concept for a wider rollout. It tackles the dominant Scope 2 burden (≈78% from Eskom supply) by deploying behind-the-meter solar at operating sites to cut grid intensity, hedge tariffs and stabilise power. Phase 1 also set the model of firm governance and data systems, sustainability KPIs in roles, and financing that blends balance-sheet assets with bilateral PPAs (~15-year terms) for bankable scale. Annual savings were calculated by multiplying the plant's yearly energy output by the difference between the Eskom blended tariff and the solar PPA price. Yearly energy was derived from capacity × 8,760 hours × the assumed capacity factor of 0.25, yielding about 65.7 GWh. At that output, each R1.00/kWh price advantage yields R65.7 million savings per year.

[Add row]

(7.55.3) What methods do you use to drive investment in emissions reduction activities?

Row 1

(7.55.3.1) Method

Select from:

☑ Compliance with regulatory requirements/standards

(7.55.3.2) Comment

Regulatory change is directly accelerating our decarbonization. As such, we quantify our South Africa Carbon Tax exposure up to 2030 and plan to set budgets for Scope 1 to comply with the South African Climate Change Bill.

Row 2

(7.55.3.1) Method

Select from:

✓ Dedicated budget for energy efficiency

(7.55.3.2) Comment

We ring-fence capex for site-level energy-efficiency projects (e.g., R8 m in South Africa and R49 m in PNG in FY24), enabling continuous upgrades to plant and underground systems that lower electricity use and emissions.

Row 3

(7.55.3.1) Method

Select from:

✓ Dedicated budget for other emissions reduction activities

(7.55.3.2) Comment

We fund renewables directly and commissioned solar assets that displaces grid power and reduces our Scope 2 emissions.

Row 4

(7.55.3.1) Method

Select from:

☑ Financial optimization calculations

(7.55.3.2) Comment

Our investment decisions are underpinned by quantified savings and abatement.

Row 5

(7.55.3.1) Method

Select from:

✓ Other :Sustainability-linked financing

(7.55.3.2) Comment

We use sustainability-linked financing (notably sustainability-linked loan facilities and a green loan) with KPIs aligned to our ESG strategy and SBTi-validated targets to fund decarbonisation projects (e.g., utility-scale solar PV), mobilising capex into emissions-reduction activities.

[Add row]

(7.74) Do you classify any of your existing goods and/or services as low-carbon products?

Select from:

✓ No

(7.79) Has your organization retired any project-based carbon credits within the reporting year?

Select from:

✓ No

- **C9. Environmental performance Water security**
- (9.1) Are there any exclusions from your disclosure of water-related data?

Select from:

✓ No

(9.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

Water withdrawals - total volumes

(9.2.1) % of sites/facilities/operations

Select from:

✓ 100%

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

Online metering, monitoring and management system

(9.2.4) Please explain

Scope of monitoring: All of Harmony's (100%) operations measure the total volume of water withdrawn on a monthly basis. Harmony defines operations as its mines and processing plants. Reason for monitoring: The total withdrawal volumes are measured and monitored on a continuous basis to ensure Harmony's operations' compliance with water use legislation and to track performance towards water use targets. The monitoring is conducted using an online management system. The online system also integrates with other water consumption drivers and tracks performance. Internal stakeholders have access to all the information. All water withdrawal volumes are verified and available online. The information from the system is used in monthly and quarterly operational reviews. Water withdrawal volumes are also required for Harmony's water balances.

Water withdrawals - volumes by source

(9.2.1) % of sites/facilities/operations

Select from:

☑ 100%

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

Online metering, monitoring and management system

(9.2.4) Please explain

Scope of monitoring: All of Harmony's operations (100%) measure the total volume of water withdrawals per source, continuously, using an online management system. Harmony defines operations as its mines and processing plants. Reason for monitoring: This data is measured and monitored to ensure accuracy and compliance with regulations. These volumes are published in Harmony's annual reports. The annual reports are developed in line with (amongst others) the Global Reporting Initiative G4 guidelines and are independently audited. The category G4-EN8 'Total water withdrawal by source' is defined as a material reporting aspect for Harmony. This allows Harmony to track its water use against targets as well as track water withdrawal costs from the different sources. Water withdrawal volumes are also required for Harmony's water balances.

Entrained water associated with your metals & mining and/or coal sector activities - total volumes

(9.2.1) % of sites/facilities/operations

Select from:

☑ 100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Calculated using the moisture content of the ore milled and the volumes of ore milled

(9.2.4) Please explain

Scope of monitoring: Entrained water volumes are not relevant at 15 of Harmony's 24 reported operations in the reporting year. Harmony monitors entrained water volumes at 100% (at the remaining nine operations) of its operations where entrained water is relevant. Harmony defines operations as its mines and processing plants. Reason for monitoring: Monitoring moisture content of the ore is important to ensure milling operations continue efficiently. The volumes of water are monitored monthly by multiplying the moisture content of the ore milled and the volumes of ore milled. Entrained moisture water volumes are also required to maintain accurate and reliable water balances

Water withdrawals quality

(9.2.1) % of sites/facilities/operations

Select from:

✓ 100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Samples taken from the surface and groundwater are tested in the lab

(9.2.4) Please explain

Scope of monitoring: Harmony monitors withdrawal quality at all (100%) of its operations. Harmony defines operations as its mines and processing plants. Reason for monitoring: Water quality on withdrawals is important to monitor to ensure levels are within allowable limits for use at Harmony's operation. This is particularly important for water used for employee consumption. This aspect is measured by taking water samples at the operations. The surface water samples are taken on a monthly basis and the groundwater samples are taken on a quarterly basis. If the withdrawals are for consumptive purposes, then the monitoring of water quality is done monthly and/or on a bi-annual basis.

Water discharges - total volumes

(9.2.1) % of sites/facilities/operations

Select from:

100%

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

Online metering, monitoring and management system

(9.2.4) Please explain

Scope of monitoring: All operations (100%) measure water that is discharged to the environment. 6 operations authorized to discharge water: Joel, Kusasalethu, Covalent Water, Margaret Water, Target and Hidden Valley. Kusasalethu, Joel and Target discharge purified sewage effluent to the environment. Harmony defines operations as its mines and processing plants. Measurements are taken when water is discharged daily at Margaret and Covalent Water Company operations and purified sewage effluent at Joel WWTP. The other operations do not discharge continuously however monitoring happens continuously to measure volumes when they occur. Volumes are measured using an online system and manual meter readings at some operations. Reason for monitoring: It is important for Harmony to measure its discharge volumes and water quality to ensure its environmental performance and maintain the water balances. The quality and quantity of water discharges are monitored to ensure compliance with regulatio

Water discharges - volumes by destination

(9.2.1) % of sites/facilities/operations

Select from:

☑ 100%

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

Online metering, monitoring and management system

(9.2.4) Please explain

Scope of monitoring: All operations (100%) measure water that is discharged to the environment. 6 of Harmony's operations discharge water, i.e. Joel, Kusasalethu, Covalent Water, Margaret Water, Target and Hidden Valley. Water discharges to fresh surface water sources in accordance with their water discharge authorisations. Harmony defines operations as its mines and processing plants. Discharges are measured as they occur by a continuous monitoring system at Kusasalethu. At Joel, Kusasalethu and Target, purified sewage effluent is discharged. Discharges at Covalent and Margaret happen daily and the monitoring system measures the volumes continuously. Volumes are measured using an online metering system. Reason for monitoring: It is important for Harmony to measure its discharge volumes to ensure environmental compliance. The quality and quantity of water discharges are monitored as required by the relevant regulations. The water discharged is also important for the water balances

Water discharges - volumes by treatment method

(9.2.1) % of sites/facilities/operations

Select from:

☑ 100%

(9.2.2) Frequency of measurement

Select from:

Continuously

(9.2.3) Method of measurement

Online metering, monitoring and management system

(9.2.4) Please explain

Scope of monitoring: All operations (100%) measure water that is treated and discharged. 6 operations discharge water and purified sewage effluent: Joel, Kusasalethu, Covalent Water, Margaret Water, Target and Hidden Valley. Harmony defines operations as mines and processing plants. Total volume of discharged

water is monitored by the required treatment method. Harmony ensures pH balancing through liming, to neutralise and flocculate heavy metals for removal before discharge to the environment. Margaret and Hidden Valley's water treatment also includes cyanide destruction prior to environmental release. Kusasalethu, Target and Joel discharge continuously treated sewage effluent. Covalent discharges from #4 and #6 shafts to keep the Mponeng operations dry. Reason for monitoring: Water quality monitoring is conducted as per regulatory best practice required by the water use authorisations. It is important to monitor water quantity discharged to treatment methods for cost implications

Water discharge quality – by standard effluent parameters

(9.2.1) % of sites/facilities/operations

Select from:

100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Samples tested in the lab for pH, conductivity, suspended solids, COD, minerals, metals, nitrogen, BOD, Faecal Coliform and E.coli

(9.2.4) Please explain

Scope of monitoring: All operations (100%) measure water discharge quality by standard effluent parameters. 6 operations that discharge water: Joel, Kusasalethu, Covalent Water, Margaret Water, Target and Hidden Valley. Water discharge quality data is monitored at each discharge point. Harmony defines operations as its mines and processing plants. Volumes are measured using an online management system. The system allows for service water quality to be measured in real-time with the exception of Hidden Valley and the Free State Operations which do not monitor continuously for quality. Notifications to responsible personnel are automatically triggered should limits be exceeded. This allows for quick reaction and ensures water quality is maintained. Harmony also conducts assays on samples through accredited laboratories. Reason for monitoring: It is important for Harmony to monitor quality of the discharged water to ensure it remains within compliance limits.

Water discharge quality – emissions to water (nitrates, phosphates, pesticides, and/or other priority substances)

(9.2.1) % of sites/facilities/operations

Select from:

100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Samples taken and tested for nitrates and phosphates

(9.2.4) Please explain

Scope of monitoring: All operations (100%) measure water discharge quality. 6 operations discharge water to the environment: Joel, Kusasalethu, Covalent Water, Margaret Water, Target and Hidden Valley. These operations measure and monitor water discharge quality data at each discharge instance. Harmony defines operations as its mines and processing plants. The volumes are measured using an online management system. The system allows for service water quality to be measured in real-time with the exception of Hidden Valley and the Free State Operations which do not monitor continuously for quality, manual samples are conducted. Notifications to responsible personnel are automatically triggered should limits be exceeded. This allows for quick reaction and ensures water quality is maintained. Reason for monitoring: Harmony monitors quality of the discharged water to ensure it remains within compliance limits. Harmony also conducts assays on samples through accredited laboratories.

Water discharge quality - temperature

(9.2.1) % of sites/facilities/operations

Select from:

100%

(9.2.2) Frequency of measurement

Select from:

Daily

(9.2.3) Method of measurement

Handheld meter at point when samples are taken

(9.2.4) Please explain

Scope of monitoring: All operations (100%) measure water discharge temperature. 6 operations that discharge water to the environment: Joel, Kusasalethu, Covalent Water, Margaret Water, Target and Hidden Valley. Harmony defines operations as its mines and processing plants. Reason for monitoring: Temperature is monitored to ensure that the temperature of the water discharge is within the range permitted by licensing requirements. Meters at the discharge destination are used for monitoring of volume and handheld meters are used to test temperature and pH at the point when samples are taken. At Hidden Valley and Harmony South Africa (excluding the Free State Operations), temperatures are measured when samples are taken, daily, weekly or monthly.

Water consumption - total volume

(9.2.1) % of sites/facilities/operations

Select from:

☑ 100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Calculated values arising from online metering, monitoring and management system

(9.2.4) Please explain

Scope of monitoring: All of Harmony's operations (100%) measure their total water consumption continuously and report on a monthly basis. Harmony defines operations as its mines and processing plants. The consumption levels are measured and monitored to track water performance targets at each operation. All of the operations also monitor the total water consumption monthly as part of our reporting processes. Control room operations monitor the consumption 24/7. The water consumption volumes are measured using an online metering system and are consistent with the CDP formula of Withdrawals - Discharge = Consumption. Reason for monitoring: Abnormal consumptions trigger investigations into the cause. Harmony can identify which operations are over- or under performing in terms of water used per tonne of product produced.

Water recycled/reused

(9.2.1) % of sites/facilities/operations

Select from:

100%

(9.2.2) Frequency of measurement

Select from:

Daily

(9.2.3) Method of measurement

Online metering, monitoring and management system

(9.2.4) Please explain

Scope of monitoring: All of Harmony's operations (100%) measure the volumes of water they reuse/recycle. Harmony defines operations as its mines and processing plants. Reuse/recycle measurements are done on a daily basis at certain operations as applicable. This provides a way to track their performance against their water recycling target. The volumes of recycled water are measured using an online management system. Reason for monitoring: Tracking this metric allows Harmony to monitor progress against their recycling targets and overall water management.

The provision of fully-functioning, safely managed WASH services to all workers

(9.2.1) % of sites/facilities/operations

Select from:

☑ 100%

(9.2.2) Frequency of measurement

Select from:

Monthly

(9.2.3) Method of measurement

Online metering, monitoring and management system

(9.2.4) Please explain

Scope of monitoring: Harmony ensures the quality of water supplied to its employees for WASH services at 100% of its operations. Harmony defines operations as its mines and processing plants. Frequent measurements are taken to ensure the water quality meets the required criteria at all of its operations. Harmony's employees at other operations have access to municipal water (monitored by municipality) for WASH services. Reason for monitoring: Ensuring that Harmony's employees have access to good quality water for cooking, drinking and sanitation is vital for Harmony's success. Employees at Kalgold mine have access to water from the reverse osmosis plant, which is analysed daily to ensure good quality. At Harmony's Hidden Valley operation employees and surrounding communities have access to fresh water treated onsite, as required, before being used for WASH services. In addition, sewage effluent is treated at all sites.

[Fixed row]

(9.2.2) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, how do they compare to the previous reporting year, and how are they forecasted to change?

Total withdrawals

(9.2.2.1) Volume (megaliters/year)

48398

(9.2.2.2) Comparison with previous reporting year

Select from:

☑ About the same

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Investment in water-smart technology/process

(9.2.2.4) Five-year forecast

Select from:

Lower

(9.2.2.5) Primary reason for forecast

Select from:

✓ Increase/decrease in efficiency

(9.2.2.6) Please explain

Change from previous year: Harmony's withdrawals increased by 8% in the reporting year. The slight increase in water withdrawals is due to the increase in water recycled from the reverse osmosis plants and increased production. Harmony continues to manage finite resources responsibly, particularly further moves to maximise the mines' use of recycled water, water harvesting and to further restrict its water discharges. As a result of these and other improvements in water efficiency, the withdrawal volumes are expected to decrease in the future. Thresholds: Harmony defines "about the same" to be a change between 0 to 10%. The decrease in the reporting year falls within the threshold of 10%. Uncertainty: The uncertainties in these volumes are considered low as they are based on monitored data from water flow meters. Volumetrics data: Withdrawal data are compiled from flow meters that monitor the water withdrawals at our operations.

Total discharges

(9.2.2.1) Volume (megaliters/year)

20357

(9.2.2.2) Comparison with previous reporting year

Select from:

Higher

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.2.4) Five-year forecast

Select from:

Lower

(9.2.2.5) Primary reason for forecast

Select from:

✓ Increase/decrease in efficiency

(9.2.2.6) Please explain

Change from previous year: Harmony's discharges increased by 32% in the reporting year. The increase can be attributed to the increase in production. Harmony anticipates that discharges will decrease in the short term as a result of improved water management practices and efficiencies, such as water treatment onsite and remain similar thereafter. In addition the increase is related to the increase in withdrawals a part of which is beyond Harmony's control. Thresholds: Harmony defines "higher" to be a change between 10 to 40%. The increase in the reporting year falls within the threshold of 40%. Uncertainty: The uncertainties in these volumes are considered low as they are based on monitored data from water flow meters. Volumetrics data: Withdrawal data is compiled from flow meters that monitor the water discharges at our operations.

Total consumption

(9.2.2.1) Volume (megaliters/year)

28041

(9.2.2.2) Comparison with previous reporting year

Select from:

About the same

(9.2.2.3) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.2.4) Five-year forecast

Select from:

✓ Lower

(9.2.2.5) Primary reason for forecast

Select from:

✓ Increase/decrease in efficiency

(9.2.2.6) Please explain

Change from previous year: Harmony's consumption increased by 2% in the reporting year. The consumption value was calculated using the formula W=D-C where W is the withdrawals, D is the discharges and C is the consumption. Therefore, Harmony's total consumption was 28,041ML/yr = 48,398ML/yr – 20,357ML/yr. Future trends: Harmony expects water consumption to increase over the short and medium term as our production increases and new mines become operational. However, Harmony continues to manage finite resources responsibly, particularly with further moves to maximise the mines' use of recycled water and to further restrict their water discharges. In addition, water treatment is conducted to generate potable water for consumptive purposes. Thresholds: Harmony defines "about the same" to be change between 0 to /-10%. Therefore, about the same was selected in the comparison column. The increase can be attributed to reductions in both withdrawals and discharges resulting from the increase in water recycling. Uncertainty: The uncertainties in these volumes are considered low as they are based on monitored data from water flow meters. Volumetrics data: Withdrawal data is compiled from flow meters that monitor the water withdrawals and discharges at our operations. [Fixed row]

(9.2.4) Indicate whether water is withdrawn from areas with water stress, provide the volume, how it compares with the previous reporting year, and how it is forecasted to change.

(9.2.4.1) Withdrawals are from areas with water stress

Select from:

Yes

(9.2.4.2) Volume withdrawn from areas with water stress (megaliters)

14838

(9.2.4.3) Comparison with previous reporting year

Select from:

Higher

(9.2.4.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.4.5) Five-year forecast

Select from:

✓ Lower

(9.2.4.6) Primary reason for forecast

Select from:

✓ Increase/decrease in efficiency

(9.2.4.7) % of total withdrawals that are withdrawn from areas with water stress

30.66

(9.2.4.8) Identification tool

Select all that apply

☑ WRI Aqueduct

✓ WWF Water Risk Filter

(9.2.4.9) Please explain

Tools and data used: Harmony uses the WWF Water Risk Filter supported by the WRI Aqueduct Water Risk Atlas tool to better understand water risk within the countries it operates: South Africa and Papua New Guinea. These tools are used to consider whether water is withdrawn from areas with water stress, which is related to but potentially different from the location of Harmony's facilities. Harmony uses the WWF Water Risk Filter tool as it has an up-to-date data and overview of regional and global water and water constraints. This tool was also used as part of Harmony's TCFD aligned climate change scenario analysis which included a detailed assessment of water risks across its operations. In addition, Harmony is already aware of its current water risks and uses the Aqueduct tool to understand future risks in terms of stress, water supply and water demand. The results from the tool form a key part of the input to Harmony's' Water Management Strategy. This focuses on improving water efficiency, protecting water as a resource, accounting for the value of water and strategically partnering for success on water management. Harmony uses the WRI Aqueduct definition of 'high water stress', which is between 40-80% according to the online tool. The following operations are accordingly classified as withdrawing water from high water stress areas in South Africa: Kusasalethu, Nufcor, Mponeng and Covalent. Hidden Valley in Papua New Guinea does not fall within a water stress area. Water volumes at these operations increased by 15% in the reporting year due to increased production levels. Harmony defines lower/ higher as any change between 10% and 40% and "about the same" to be a change between 0 to 10%. Management responses to these water risks: Harmony recognises the importance of water, especially in areas of high-water stress, and as such has implemented a number of water savings targets and capital projects across its operations in order to manage water as effectively as possible. For example, at many of Harmony's underground operations in South Africa, the company intercepts the aguifer to generate fissure water, which is then treated and used, thus liberating other fresh water supplies for other users in communities. Water in South Africa is generally deemed a scarce resource and, as a country, South Africa has adopted an inter- and multidisciplinary approach to the management of our water resources by means of catchment management agencies. At Hidden Valley in PNG, despite not falling within a water stressed area, various water management initiatives are implemented to reduce water use. A reduction in water usage in PNG of 3.4% was achieved. A rainfall collection plant is

planned for 2025 to take advantage of the high rainfall in the area. As Harmony mines deeper and neighbouring operations close, more water enters our shafts and will be pumped out. This will result in increased withdrawals however these volumes are beyond Harmony's control. Harmony also participates in a number of water catchment agencies in South Africa, including the following: • Far West Rand Technical Working Group • Far West Rand Dolomitic Association • KOSH Mine Water Forum • Free State Government Task Team • Sandvet CMA [Fixed row]

(9.2.7) Provide total water withdrawal data by source.

Fresh surface water, including rainwater, water from wetlands, rivers, and lakes

(9.2.7.1) Relevance

Select from:

✓ Not relevant

(9.2.7.5) Please explain

Relevance: In the reporting year, none of Harmony's operations withdrew from fresh surface water sources due primarily to the increase in fissure water and renewable groundwater use as well as the new RO plant that was commissioned. Future trends: future volumes are expected to be similar as water treatment plants come online and water recycling is improved at our operations.

Brackish surface water/Seawater

(9.2.7.1) Relevance

Select from:

✓ Relevant

(9.2.7.2) Volume (megaliters/year)

3830

(9.2.7.3) Comparison with previous reporting year

Select from:

Much higher

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Investment in water-smart technology/process

(9.2.7.5) Please explain

Relevance: In the reporting year, some of Harmony's operations withdrew water from poor quality surface water sources, therefore this source is relevant. Monitoring: Undertaken through direct measurements. Withdrawal volumes from such sources increased by 55% when compared to the previous reporting period. Comparison threshold: Accordingly, the change is categorised as 'much higher', as Harmony defines such a change as a change above 40%. The change is primarily due to increased withdrawals for the new RO plant at Harmony 1 Plant. This further enables us to reduce reliance on fresh water sources. Future trends: future volumes are expected to decrease with further water management initiatives.

Groundwater - renewable

(9.2.7.1) Relevance

Select from:

✓ Relevant

(9.2.7.2) Volume (megaliters/year)

3033

(9.2.7.3) Comparison with previous reporting year

Select from:

Much higher

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.7.5) Please explain

Relevance: Harmony withdraws water from renewable groundwater at its operations and this source is therefore relevant. Monitoring: Undertaken through direct measurements. Withdrawals from this source increased by 88.6% compared to the previous reporting year. Comparison threshold: Harmony defines any increase of more than 40% as 'much lower'. The change is due to the switch at Kopanang from brackish water to renewable groundwater as a result of the plant closing down. Future trends: future volumes are expected to decrease with further water management initiatives.

Groundwater - non-renewable

(9.2.7.1) Relevance

Select from:

Relevant

(9.2.7.2) Volume (megaliters/year)

21585

(9.2.7.3) Comparison with previous reporting year

Select from:

Higher

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Other, please specify :Above average rainfall resulted in higher water levels underground

(9.2.7.5) Please explain

Relevance: Harmony withdraws water from non-renewable groundwater at its operations and this source is therefore relevant. Monitoring: Undertaken through direct measurements. Withdrawals from this source increased by 19% compared to the previous reporting year. Comparison threshold: Harmony defines "higher" to be a change between 10% to 40%. The increase is due to above average rainfall increasing water levels underground and the resulting increase in pumping. Future trends: future volumes are expected to decrease with further water management initiatives.

Produced/Entrained water

(9.2.7.1) Relevance

Select from:

Relevant

(9.2.7.2) Volume (megaliters/year)

646

(9.2.7.3) Comparison with previous reporting year

Select from:

About the same

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Other, please specify: similar moisture content in ore

(9.2.7.5) Please explain

Relevance: Entrained water forms part of Harmony's operations and relates to the moisture contained within the ore that is mined. This source is therefore relevant. Monitoring: Undertaken through direct measurements. The entrained water volumes were 1% higher in the reporting year. Comparison threshold: Harmony defines "about the same" to be a change between 0 to 10%. Accordingly the volumes remained about the same compared to the previous year. A similar moisture content was experienced with consistent ore volumes during the reporting year, therefore these volumes remained about the same. Future trends: Volumes expected to remain similar unless the moisture content of the ore body changes. These volumes are dependent on the ore body properties.

Third party sources

(9.2.7.1) Relevance

Select from:

✓ Relevant

(9.2.7.2) Volume (megaliters/year)

(9.2.7.3) Comparison with previous reporting year

Select from:

✓ About the same

(9.2.7.4) Primary reason for comparison with previous reporting year

Select from:

✓ Investment in water-smart technology/process

(9.2.7.5) Please explain

Relevance: Harmony receives water from third party sources at its operations, therefore this source is relevant. Monitoring: Undertaken through direct measurements. Water withdrawals from this source decreased by 4% compared to the previous reporting year due to additional RO plants at Harmony One as well as the increase in groundwater withdrawals. Comparison threshold: Harmony defines "about the same" to be a change between 0 to 10%. Accordingly, the change in the reporting year is considered about the same as the previous reporting year. Future trends: future volumes are expected to decrease with further water management initiatives. Suppliers: Bulk municipal suppliers provide Harmony's operations with potable water. At four operations in South Africa withdrawals are in a water stress area as determined by the WRI Aqueduct tool.

[Fixed row]

(9.2.8) Provide total water discharge data by destination.

Fresh surface water

(9.2.8.1) Relevance

Select from:

✓ Relevant

(9.2.8.2) Volume (megaliters/year)

15955

(9.2.8.3) Comparison with previous reporting year

Select from:

Higher

(9.2.8.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.8.5) Please explain

Relevance: Six of Harmony's operations discharge water from their sites, making this discharge relevant. These are Joel, Kusasalethu, Target, Margaret Water Company and Covalent Water Company in South Africa and Hidden Valley in Papua New Guinea. Monitoring: Undertaken through direct measurements. All these sites discharge water into fresh surface water sources. Discharges increased by 23% in the reporting year. Comparison threshold: Harmony defines "higher" to be a change between 10 to 40%. The change is due to increased production within the group along with the clearing of a blocked pipeline. Future trends: future volumes are expected to decrease with further water management initiatives.

Brackish surface water/seawater

(9.2.8.1) Relevance

Select from:

Relevant

(9.2.8.2) Volume (megaliters/year)

2919

(9.2.8.3) Comparison with previous reporting year

Select from:

Much higher

(9.2.8.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.8.5) Please explain

Relevance: Only Covalent discharges water into brackish surface water sources. Monitoring: Undertaken through direct measurements. Discharges increased by 749% in the reporting year. Comparison threshold: Harmony defines any change more than 40% as much higher. The change is primarily due to actively reducing the water level and creating enough freeboard with a larger underground pump at the operations where Covalent processes water. This water is discharged to a brackish destination. Future trends: future volumes are expected to decrease with further water management initiatives.

Groundwater

(9.2.8.1) Relevance

Select from:

✓ Not relevant

(9.2.8.5) Please explain

None of Harmony's operations discharge water to groundwater sources.

Third-party destinations

(9.2.8.1) Relevance

Select from:

✓ Relevant

(9.2.8.2) Volume (megaliters/year)

1482

(9.2.8.3) Comparison with previous reporting year

Select from:

✓ Lower

(9.2.8.4) Primary reason for comparison with previous reporting year

Select from:

✓ Other, please specify :Above average rainfall

(9.2.8.5) Please explain

Relevance: Only Harmony's Margaret Water Company operation discharges to a third party. Monitoring: Undertaken through direct measurements. These discharges decreased by 28%. Comparison threshold: The change in the reporting year falls within the 'lower' threshold i.e. 10% to 40%. The changes are due to above average rainfall resulting in an increase in discharges to surface water instead of third party destinations. Future trends: future volumes are expected to decrease with further water management initiatives. Third party destination: Volumes are discharged to local farmers without entering the municipal system..

[Fixed row]

(9.2.9) Within your direct operations, indicate the highest level(s) to which you treat your discharge.

Tertiary treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Not relevant

(9.2.9.6) Please explain

Explanation of why this level of treatment is not relevant for our discharge: none of our operations discharge with tertiary treatment. Our primary treatment plants are sufficient to treat our discharges to levels within the thresholds of our water use authorisations.

Secondary treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Not relevant

(9.2.9.6) Please explain

Explanation of why this level of treatment is not relevant for our discharge: none of our operations discharge with secondary treatment. Our primary treatment plants are sufficient to treat our discharges to levels within the thresholds of our water use authorisations.

Primary treatment only

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Relevant

(9.2.9.2) Volume (megaliters/year)

20356

(9.2.9.3) Comparison of treated volume with previous reporting year

Select from:

Higher

(9.2.9.4) Primary reason for comparison with previous reporting year

Select from:

✓ Increase/decrease in business activity

(9.2.9.5) % of your sites/facilities/operations this volume applies to

Select from:

100%

(9.2.9.6) Please explain

Rationale for the level of treatment applied to our discharge: All planned and anticipated discharge water is treated as part of Harmony's Water Management Strategy before being discharged to the natural environment (both fresh and brackish surface water). Compliance with regulatory or voluntary standards: This treatment ensures that our discharges fall within the release criteria of our water discharge licenses / environment permits from the regulatory authority. Metrics: Various metrics are monitored depending on the operation including pH, SO4, EC, TDS, Fe, Cu, Dissolved U, metals, cyanide, sulphate, alkalinity, acidity, TSS, conductivity, turbidity, dissolved oxygen, STP (nutrients), BOD and nitrates. The thresholds for these are provided in the discharge authorisations. Each operation has specific thresholds,

the values for Margaret Water Company have been used for the examples. Examples from this permit are the average intake and output values for Iron (Fe) is 0.01mg/L intake and 0.01mg/L output. Another example is the range for the Total Dissolved Solids (TDS) with 1 220mg/L intake and 1617mg/L output. The maximum output volume of discharge is 1 162 751m3. Comparison thresholds: Harmony defines a change between 10% and 40% as 'higher'. Discharges increased by 35%, primarily due to increased production, which falls within this range. Future trends: Our planned discharges are anticipated to decrease in future as additional water management projects and treatment plants are established, to increase our water reuse. Our reused water will still be treated.

Discharge to the natural environment without treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Not relevant

(9.2.9.6) Please explain

Explanation of why this level of treatment is not relevant for our discharge: none of our operations discharge without treatment to the natural environment.

Discharge to a third party without treatment

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Not relevant

(9.2.9.6) Please explain

Explanation of why this level of treatment is not relevant for our discharge: none of our operations discharge without treatment to a third party.

Other

(9.2.9.1) Relevance of treatment level to discharge

Select from:

✓ Not relevant

(9.2.9.6) Please explain

Explanation of why this level of treatment is not relevant for our discharge: none of our operations discharge with other treatment levels. [Fixed row]

(9.2.10) Provide details of your organization's emissions of nitrates, phosphates, pesticides, and other priority substances to water in the reporting year.

(9.2.10.2) Categories of substances included

Select all that apply

- ✓ Nitrates
- Phosphates
- ✓ Pesticides

(9.2.10.4) Please explain

Harmony monitors the water discharge quality at all of its operations that discharge. Due to the nature of the monitoring, only the concentration of the substances is tracked, actual values of the pollutants are not available. This is in accordance with water quality monitoring requirements in our water use authorisations and licences as applicable. The concentration of nitrates, phosphates, pesticides and dissolved uranium are all below the regulated thresholds in our operation water discharge licenses. Dissolved uranium is not monitored at Target and Joel WWTPs. Parts of the business emitting pollutants: The following operations discharge mine affected water that contain concentrations of nitrates, phosphates, and dissolved uranium below the allowable thresholds of their permits: Hidden Valley, Target, Joel, Margaret Water Company, Covalent Water Company and Kusasalethu. Geographic areas: Hidden Valley is in Papua New Guinea while the remaining operations are located in South Africa. Emissions in water stressed areas or vulnerable communities: Of the above operations, Kusasalethu is located in a water stressed area as defined by the WWF Water Risk Filter. Our operations discharge to fresh surface water bodies, which may affect the surrounding communities. Our operations measure the concentrations of these pollutants and ensure that these are below the safe limits imposed by our water discharge licences / environment permits by treating the water before discharge. [Fixed row]

(9.3) In your direct operations and upstream value chain, what is the number of facilities where you have identified substantive water-related dependencies, impacts, risks, and opportunities?

Direct operations

(9.3.1) Identification of facilities in the value chain stage

Select from:

✓ Yes, we have assessed this value chain stage and identified facilities with water-related dependencies, impacts, risks, and opportunities

(9.3.2) Total number of facilities identified

24

(9.3.3) % of facilities in direct operations that this represents

Select from:

✓ 100%

(9.3.4) Please explain

Harmony defines 'facilities' as its mines and processing plants. Water plays an essential role in the operation of all (100%) of Harmony's facilities, being utilized in various processes such as asset development, mining activities, gold processing, dust suppression, and slurry transport. Water scarcity is a critical concern in South Africa, particularly in the regions where Harmony's operations are located. A shortage of water supply poses a significant threat to the continuous operation of Harmony's mines and has substantial financial implications. Given that Harmony's South African facilities are situated in traditionally water-stressed areas, they are exposed to water-related risks that have the potential to cause significant operational changes. Heavy, unexpected rainfall also presents risks for Harmony, evident in the reporting year. Heavy rainfall was experienced in South Africa. Kalgold, for example, was severely affected by heavy rainfall, with 130mm of rain falling in just three days. Despite the increased rainfall in South Africa, water availability remains unpredictable. Papua New Guinea remains a lower water risk area, as it is not classified as a water stressed region in the location of our Hidden Valley operation. There remain challenges at Hidden Valley relating to water due to the high rainfall and steep topography in the area. A rainfall collection plant is planned for implementation in 2025 to improve our use of rainfall and reduce dependence on other sources.

Upstream value chain

(9.3.1) Identification of facilities in the value chain stage

Select from:

☑ No, we have not assessed this value chain stage for facilities with water-related dependencies, impacts, risks, and opportunities, but we are planning to do so in the next 2 years

(9.3.4) Please explain

Harmony has not conducted an assessment of the facilities within its upstream value chain for their dependencies, impacts, risks and opportunities that are water related. While water is a critical resource within our value chain we have not yet assessed our suppliers. Our assessments have focused on our direct operations where we have more direct influence to enact changes to improve water management.

[Fixed row]

(9.3.1) For each facility referenced in 9.3, provide coordinates, water accounting data, and a comparison with the previous reporting year.

Row 1

(9.3.1.1) Facility reference number

Select from:

✓ Facility 1

(9.3.1.2) Facility name (optional)

Doornkop Mine

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals only

(9.3.1.6) Reason for no withdrawals and/or discharges

Doornkop operates on a closed loop system with recycling. As a result there are no discharges at this operation.

(9.3.1.7) Country/Area & River basin

South Africa

✓ Vaal

(9.3.1.8) Latitude

-26.217517

(9.3.1.9) Longitude

27.790908

(9.3.1.10) Located in area with water stress

Select from:

✓ No

(9.3.1.13) Total water withdrawals at this facility (megaliters)

899

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

Much lower

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

0

(9.3.1.16) Withdrawals from brackish surface water/seawater

0

(9.3.1.17) Withdrawals from groundwater - renewable

51

(9.3.1.18) Withdrawals from groundwater - non-renewable

0

(9.3.1.19) Withdrawals from produced/entrained water

35

(9.3.1.20) Withdrawals from third party sources

813

(9.3.1.27) Total water consumption at this facility (megaliters)

899

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Much lower

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicated that Doornkop was outside the threshold of 40-80% defined as high water stress. Trends: Doornkop decreased withdrawals and consumption by 52% in the reporting year. These decreased withdrawals are a result of repairs on the pipeline leak from Rand Water. Harmony anticipates that future water withdrawal volumes will reduce in line with the water targets and water conservation initiatives, like process optimisations and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates water consumption in accordance with the CDP's formula of withdrawals minus discharges. Measurement methods: The water withdrawal volumes are obtained from direct measurements using an online data

monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third party supplier is Rand Water, a parastatal utility. Discharges to third party destinations: none.

Row 2

(9.3.1.1) Facility reference number

Select from:

✓ Facility 2

(9.3.1.2) Facility name (optional)

Kusasalethu Mine

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

ightharpoonup Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

South Africa

✓ Vaal

(9.3.1.8) Latitude
-26.454481
(9.3.1.9) Longitude
27.3592
(9.3.1.10) Located in area with water stress
Select from: ✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
3127
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ Higher
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
o
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
o
(9.3.1.18) Withdrawals from groundwater - non-renewable

0
(9.3.1.19) Withdrawals from produced/entrained water
107
(9.3.1.20) Withdrawals from third party sources
3020
(9.3.1.21) Total water discharges at this facility (megaliters)
1575
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ☑ Higher
(9.3.1.23) Discharges to fresh surface water
1575
(9.3.1.24) Discharges to brackish surface water/seawater
0
(9.3.1.25) Discharges to groundwater
0
(9.3.1.26) Discharges to third party destinations
0

(9.3.1.27) Total water consumption at this facility (megaliters)

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ About the same

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicated that Kusasalethu was inside the threshold of 40-80% defined as high water stress. Trends: Kusasalethu increased withdrawals by 10%, increased consumption by 4% and increase discharges by 15%. Increases are due to production changes at the operation. Harmony anticipates future water withdrawal volumes to reduce in line with water targets and water conservation initiatives such as process optimisations and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: Kusasalethu's water withdrawal and discharge volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third party supplier is the municipal supplier. Discharges to third party destinations: none.

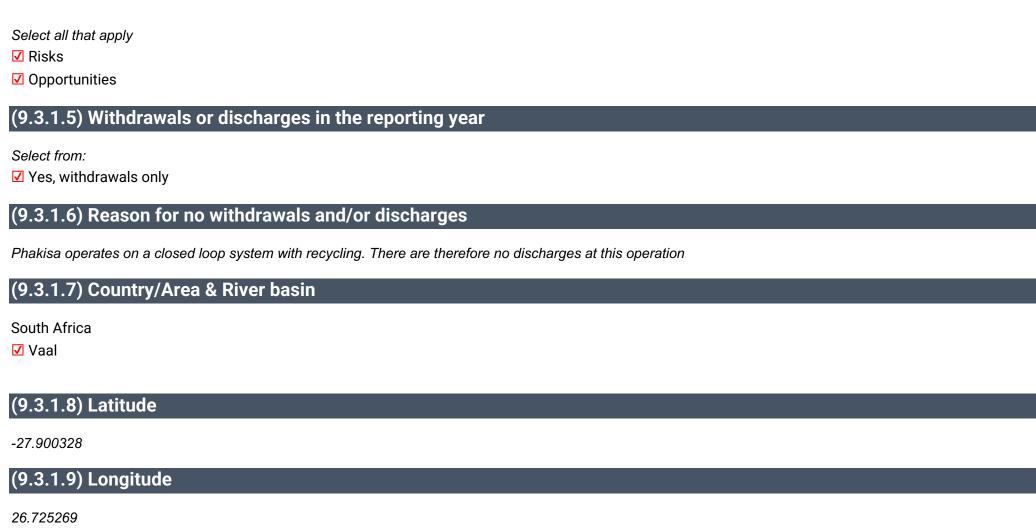
Row 3

(9.3.1.1) Facility reference number

Select from:

✓ Facility 3

(9.3.1.2) Facility name (optional)


Phakisa Mine

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

(9.3.1.10) Located in area with water stress

Select from:

✓ No

(9.3.1.13) Total water withdrawals at this facility (megaliters)

1080

(9.3.1.14) Comparison of total withdrawals with previous reporting year	
Select from: ✓ Lower	
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes	
o	
(9.3.1.16) Withdrawals from brackish surface water/seawater	
o	
(9.3.1.17) Withdrawals from groundwater - renewable	
o	
(9.3.1.18) Withdrawals from groundwater - non-renewable	
o	
(9.3.1.19) Withdrawals from produced/entrained water	
0	
(9.3.1.20) Withdrawals from third party sources	
1080	
(9.3.1.27) Total water consumption at this facility (megaliters)	
1080	
(9.3.1.28) Comparison of total consumption with previous reporting year	
Select from:	

✓ Lower

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicated that Phakisa was outside the threshold of 40-80% defined as high water stress. Trends: Phakisa decreased withdrawals and consumption by 30% in the reporting year, due to process optimisation and recycling activities. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives, such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Measurement: The mine's water withdrawal volumes are obtained from direct measurements using an online data monitoring system. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third party supplier is Vaal Central Water Company, a state owned entity. Discharges to third party destinations: none. The zero total discharge value reported for this operation indicates that the operation did not discharge to any destination due to the operation of a closed loop recycling system at the mine.

Row 4

(9.3.1.1) Facility reference number

Select from:

✓ Facility 4

(9.3.1.2) Facility name (optional)

Target 1

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting	a vear
v	7.0.1.0	, tridial arrais of alcoharges in the reporting	gycar

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

South Africa

✓ Vaal

(9.3.1.8) Latitude

-27.761734

(9.3.1.9) Longitude

26.640678

(9.3.1.10) Located in area with water stress

Select from:

✓ No

(9.3.1.13) Total water withdrawals at this facility (megaliters)

480

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

Lower

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
o
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water
24
(9.3.1.20) Withdrawals from third party sources
456
(9.3.1.21) Total water discharges at this facility (megaliters)
0.04
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ☑ Much lower
(9.3.1.23) Discharges to fresh surface water
0.04
(9.3.1.24) Discharges to brackish surface water/seawater
0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

0

(9.3.1.27) Total water consumption at this facility (megaliters)

480

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

☑ Higher

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicated that Target 1 was outside the threshold of 40-80% defined as high water stress. Trends: Target 1 decreased withdrawals by 30% and increased consumption by 27% in the reporting year. Target discharged small volumes of water in the reporting year, decreasing by 100%, contributing to the increased consumption figure. The decrease in discharges resulted from the complete ceasing of discharge to Voelpan. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water from the newly installed water treatment plants. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: Their water withdrawal and discharge volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is the municipal supplier. Discharges to third party destinations: none.

Row 5

(9.3.1.1) Facility reference number

Select from:

✓ Facility 5

(9.3.1.2) Facility name (optional)

Tshepong

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals only

(9.3.1.6) Reason for no withdrawals and/or discharges

Tshepong operates on a closed loop system with recycling. There are therefore no water discharges at the operation

(9.3.1.7) Country/Area & River basin

South Africa

✓ Vaal

(9.3.1.8) Latitude

-27.865732

(9.3.1.9) Longitude

20.712462
(9.3.1.10) Located in area with water stress
Select from: ☑ No
(9.3.1.13) Total water withdrawals at this facility (megaliters)
1039
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ Higher
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water

(9.3.1.20) Withdrawals from third party sources

1039

(9.3.1.27) Total water consumption at this facility (megaliters)

1039

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Higher

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicated that Tshepong was outside the threshold of 40-80% defined as high water stress. Trends: Tshepong increased withdrawals and consumption by 16% in the reporting year, due to production changes at the operation. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: The water withdrawal volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is the municipal supplier. Discharges to third party destinations: none.

Row 6

(9.3.1.1) Facility reference number

Select from:

✓ Facility 6

(9.3.1.2) Facility name (optional)

Masimong

(9.3.1.3) Value chain stage

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals only

(9.3.1.6) Reason for no withdrawals and/or discharges

Masimong operates a closed loop recycling system and thus does not discharge water to any destination

(9.3.1.7) Country/Area & River basin

South Africa

✓ Vaal

(9.3.1.8) Latitude

-27.974006

(9.3.1.9) Longitude

26.877616

(9.3.1.10) Located in area with water stress

Select from:

☑ No
(9.3.1.13) Total water withdrawals at this facility (megaliters)
647
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ Much lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water
0
(9.3.1.20) Withdrawals from third party sources
647

(9.3.1.27) Total water consumption at this facility (megaliters)

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Much lower

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicated that Masimong was outside the threshold of 40-80% defined as high water stress. Trends: Masimong decreased withdrawals and consumption by 47% in the reporting year. The decrease in withdrawals and consumption are as a result of repairs to major leaks at the operation. As in the previous reporting year there were no discharges at the operation. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: Masimong's water withdrawal volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is the municipal supplier. Discharges to third party destinations: none.

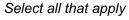
Row 7

(9.3.1.1) Facility reference number

Select from:

✓ Facility 7

(9.3.1.2) Facility name (optional)


Bambanani

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Risks

Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals only

(9.3.1.6) Reason for no withdrawals and/or discharges

Bambanani operates a closed loop recycling system and thus does not discharge water to any destination

(9.3.1.7) Country/Area & River basin

South Africa

✓ Vaal

(9.3.1.8) Latitude

-28.042311

(9.3.1.9) Longitude

26.803426

(9.3.1.10) Located in area with water stress

Select from:

✓ No

(9.3.1.13) Total water withdrawals at this facility (megaliters)

(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ Much lower
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
o
(9.3.1.17) Withdrawals from groundwater - renewable
o
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water
o
(9.3.1.20) Withdrawals from third party sources
72
(9.3.1.27) Total water consumption at this facility (megaliters)
72
(9.3.1.28) Comparison of total consumption with previous reporting year
Select from:

✓ Much lower

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicated that Bambanani was outside the threshold of 40-80% defined as high water stress. Trends: Bambanani decreased withdrawals by 51% and decreased consumption by 51% in the reporting year. These decreases are due to improvements in measurement accuracy. As in the previous reporting year there were no discharges at the operation. Harmony anticipates their future water volumes to reduce as the operation has reached its end of life and was closed in FY23. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: Bambanani's water withdrawal volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is the municipal supplier. Discharges to third party destinations: none.

Row 8

(9.3.1.1) Facility reference number

Select from:

✓ Facility 8

(9.3.1.2) Facility name (optional)

Unisel

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

✓ Yes, withdrawals only	
(9.3.1.6) Reason for no withdrawals and/or discharges	
Unisel operates a closed loop recycling system and thus does not discharge water to any destination	
(9.3.1.7) Country/Area & River basin	
South Africa	
✓ Vaal	

(9.3.1.8) Latitude

-28.064026

(9.3.1.9) Longitude

26.786502

(9.3.1.10) Located in area with water stress

Select from:

✓ No

(9.3.1.13) Total water withdrawals at this facility (megaliters)

0

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

✓ Much lower

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

(9.3.1.16) Withdrawals from brackish surface water/seawater

0

(9.3.1.17) Withdrawals from groundwater - renewable

0

(9.3.1.18) Withdrawals from groundwater - non-renewable

0

(9.3.1.19) Withdrawals from produced/entrained water

0

(9.3.1.20) Withdrawals from third party sources

n

(9.3.1.27) Total water consumption at this facility (megaliters)

0

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Much lower

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicated that Unisel was outside the threshold of 40-80% defined as high water stress. Trends: Unisel decreased withdrawals by 100% and decreased consumption by 100% in the reporting year. These decreases are due to the completion of shaft closure in the reporting year. As in the previous reporting year there were no discharges at the operation. Harmony anticipates their future water volumes to reduce as this operation has reached its end of life. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same

as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of Withdrawals minus discharge. Measurement methods: Unisel's water withdrawal volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is the municipal supplier Discharges to third party destinations: none

Row 9

(9.3.1.1) Facility reference number

Select from:

✓ Facility 9

(9.3.1.2) Facility name (optional)

Joel

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

✓ Risks

Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

South Africa ✓ Vaal
(9.3.1.8) Latitude
-28.275924
(9.3.1.9) Longitude
26.814459
(9.3.1.10) Located in area with water stress
Select from: ☑ No
(9.3.1.13) Total water withdrawals at this facility (megaliters)
982
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ About the same
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater

(9.3.1.16) Withdrawals from brackish surface water/seawater

n

(9.3.1.17) Withdrawals from groundwater - renewable

(9.3.1.18) Withdrawals from groundwater - non-renewable 0 (9.3.1.19) Withdrawals from produced/entrained water 0 (9.3.1.20) Withdrawals from third party sources 982 (9.3.1.21) Total water discharges at this facility (megaliters) 139 (9.3.1.22) Comparison of total discharges with previous reporting year Select from: ☑ Higher (9.3.1.23) Discharges to fresh surface water
(9.3.1.19) Withdrawals from produced/entrained water 0 (9.3.1.20) Withdrawals from third party sources 982 (9.3.1.21) Total water discharges at this facility (megaliters) 139 (9.3.1.22) Comparison of total discharges with previous reporting year Select from: ✓ Higher
(9.3.1.20) Withdrawals from third party sources 982 (9.3.1.21) Total water discharges at this facility (megaliters) 139 (9.3.1.22) Comparison of total discharges with previous reporting year Select from: ✓ Higher
(9.3.1.20) Withdrawals from third party sources 982 (9.3.1.21) Total water discharges at this facility (megaliters) 139 (9.3.1.22) Comparison of total discharges with previous reporting year Select from: ✓ Higher
982 (9.3.1.21) Total water discharges at this facility (megaliters) 139 (9.3.1.22) Comparison of total discharges with previous reporting year Select from: ✓ Higher
(9.3.1.21) Total water discharges at this facility (megaliters) 139 (9.3.1.22) Comparison of total discharges with previous reporting year Select from: ✓ Higher
139 (9.3.1.22) Comparison of total discharges with previous reporting year Select from: ✓ Higher
(9.3.1.22) Comparison of total discharges with previous reporting year Select from: ✓ Higher
Select from: ☑ Higher
✓ Higher
(9.3.1.23) Discharges to fresh surface water
139
(9.3.1.24) Discharges to brackish surface water/seawater
0
(9.3.1.25) Discharges to groundwater

(9.3.1.26) Discharges to third party destinations

(9.3.1.27) Total water consumption at this facility (megaliters)

843

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

About the same

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicated that Joel was outside the threshold of 40-80% defined as high water stress. Trends: Joel increased withdrawals by 9% and consumption by 6% in the reporting year The discharges increased by 36% due to production changes. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: Joel's water withdrawal and discharge volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is the municipal supplier. Discharges to third party destinations: none.

Row 10

(9.3.1.1) Facility reference number

Select from:

✓ Facility 10

(9.3.1.2) Facility name (optional)

Kalgold

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals only

(9.3.1.6) Reason for no withdrawals and/or discharges

Kalgold operates a closed loop recycling system and thus does not discharge water to any destination

(9.3.1.7) Country/Area & River basin

South Africa

Vaal

(9.3.1.8) Latitude

-26.172222

(9.3.1.9) Longitude

25.25

(9.3.1.10) Located in area with water stress

Select from:

Yes

(9.3.1.13) Total water withdrawals at this facility (megaliters)
299
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ About the same
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
o
(9.3.1.16) Withdrawals from brackish surface water/seawater
5
(9.3.1.17) Withdrawals from groundwater - renewable
228
(9.3.1.18) Withdrawals from groundwater - non-renewable
52
(9.3.1.19) Withdrawals from produced/entrained water
14
(9.3.1.20) Withdrawals from third party sources
0
(9.3.1.27) Total water consumption at this facility (megaliters)
299

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

About the same

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicated that Kalgold was outside the threshold of 40-80% defined as high water stress. Trends: Kalgold increased withdrawals by 5% and consumption by 5% in the reporting year. The difference in withdrawals can be attributed to improvements in metering. As in the previous reporting year there were no discharges at the operation. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: Kalgold's water withdrawal volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: none. Discharges to third party destinations: none.

Row 11

(9.3.1.1) Facility reference number

Select from:

✓ Facility 11

(9.3.1.2) Facility name (optional)

Hidden Valley

(9.3.1.3) Value chain stage

Select from:

Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

✓ Opportunities
 (9.3.1.5) Withdrawals or discharges in the reporting year
 Select from:
 ✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

Papua New Guinea

✓ Fly

(9.3.1.8) Latitude

-6.723669

(9.3.1.9) Longitude

146.9909

(9.3.1.10) Located in area with water stress

Select from:

✓ No

(9.3.1.13) Total water withdrawals at this facility (megaliters)

2265

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

☑ About the same

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

(9.3.1.16) Withdrawals from brackish surface water/seawater

2112

(9.3.1.17) Withdrawals from groundwater - renewable

0

(9.3.1.18) Withdrawals from groundwater - non-renewable

0

(9.3.1.19) Withdrawals from produced/entrained water

153

(9.3.1.20) Withdrawals from third party sources

0

(9.3.1.21) Total water discharges at this facility (megaliters)

2688

(9.3.1.22) Comparison of total discharges with previous reporting year

Select from:

Higher

(9.3.1.23) Discharges to fresh surface water

2688

(9.3.1.24) Discharges to brackish surface water/seawater

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

0

(9.3.1.27) Total water consumption at this facility (megaliters)

-423

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Much lower

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicated that Hidden Valley was outside the threshold of 40-80% defined as high water stress. Trends: Hidden Valley decreased withdrawals by 2%, increased discharges by 40% and decreased consumption by 206% in the reporting year. The discharges increased due removal of pipe blockages. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. A negative consumption is obtained due to the use of the CDP formula and not all water entering the operation being captured as withdrawals, such as water collecting in the pit from rainfall. Measurement methods: Hidden Valley's water withdrawal and discharge volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: none. Discharges to third party destinations: none.

Row 12

(9.3.1.1) Facility reference number

Select from:

✓ Facility 12

(9.3.1.2) Facility name (optional)

Harmony 1 Plant

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals only

(9.3.1.6) Reason for no withdrawals and/or discharges

Harmony 1 operates a closed loop recycling system and thus does not discharge water to any destination

(9.3.1.7) Country/Area & River basin

South Africa

✓ Vaal

(9.3.1.8) Latitude

-28.016819

(9.3.1.9) Longitude

Select from:

✓ No

(9.3.1.13) Total water withdrawals at this facility (megaliters)

2030

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

Much higher

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

0

(9.3.1.16) Withdrawals from brackish surface water/seawater

1713

(9.3.1.17) Withdrawals from groundwater - renewable

0

(9.3.1.18) Withdrawals from groundwater - non-renewable

0

(9.3.1.19) Withdrawals from produced/entrained water

164

(9.3.1.20) Withdrawals from third party sources

153

(9.3.1.27) Total water consumption at this facility (megaliters)

2030

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Much higher

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicated that Harmony 1 Plant was outside the threshold of 40-80% defined as high water stress. Trends: Harmony 1 Plant increased withdrawals and consumption by 208% in the reporting year. Increases are due to withdrawals for the new RO plant as well as installation of accurate meters. As in the previous reporting year there were no discharges at the operation. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: Water withdrawal volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is the municipal supplier. Discharges to third party destinations: none.

Row 13

(9.3.1.1) Facility reference number

Select from:

✓ Facility 13

(9.3.1.2) Facility name (optional)

Target plant

(9.3.1.3) Value chain stage

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals only

(9.3.1.6) Reason for no withdrawals and/or discharges

Target Plant operates a closed loop recycling system and thus does not discharge water to any destination

(9.3.1.7) Country/Area & River basin

South Africa

✓ Vaal

(9.3.1.8) Latitude

-27.763767

(9.3.1.9) Longitude

26.640388

(9.3.1.10) Located in area with water stress

Select from:

☑ No
(9.3.1.13) Total water withdrawals at this facility (megaliters)
159
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ About the same
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
o
(9.3.1.17) Withdrawals from groundwater - renewable
o
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water
24
(9.3.1.20) Withdrawals from third party sources

(9.3.1.27) Total water consumption at this facility (megaliters)

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ About the same

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicated that Target Plant was outside the threshold of 40-80% defined as the high water stress. Trends: Target Plant decreased withdrawals and consumption slightly by 3% in the reporting year, indicating stable operations. As in the previous reporting year there were no discharges at the operation. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: Water withdrawal volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is Vaal Central Water Company. Discharges to third party destinations: none.

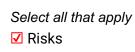
Row 14

(9.3.1.1) Facility reference number

Select from:

✓ Facility 14

(9.3.1.2) Facility name (optional)


Saaiplaas Plant

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals only

(9.3.1.6) Reason for no withdrawals and/or discharges

Saaiplaas Plant operates a closed loop recycling system and thus does not discharge water to any destination

(9.3.1.7) Country/Area & River basin

South Africa

✓ Vaal

(9.3.1.8) Latitude

-28.036452

(9.3.1.9) Longitude

26.867598

(9.3.1.10) Located in area with water stress

Select from:

✓ No

(9.3.1.13) Total water withdrawals at this facility (megaliters)

(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ Much higher
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
o
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water
o
(9.3.1.20) Withdrawals from third party sources
98
(9.3.1.27) Total water consumption at this facility (megaliters)
98
(9.3.1.28) Comparison of total consumption with previous reporting year
Select from:

Much higher

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicates that Saaiplaas Plant was outside the threshold of 40-80% defined as high water stress. Trends: Saaiplaas Plant increased withdrawals and consumption by 190% in the reporting year. The significant increase is due to the increase in requirements for makeup water due to low water levels from recycling. As in the previous reporting year there were no discharges at the operation. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: Harmony's water withdrawal volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is the municipal supplier. Discharges to third party destinations: none.

Row 15

(9.3.1.1) Facility reference number

Select from:

✓ Facility 15

(9.3.1.2) Facility name (optional)

Central Plant

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:
✓ Yes, withdrawals only
/0.0.1.1\D
(9.3.1.6) Reason fo

(9.3.1.6) Reason for no withdrawals and/or discharges

Central Plant operates a closed loop recycling system and thus does not discharge water to any destination

(9.3.1.7) Country/Area & River basin

South Africa

√ Vaal

(9.3.1.8) Latitude

-28.060412

(9.3.1.9) Longitude

26.887472

(9.3.1.10) Located in area with water stress

Select from:

✓ No

(9.3.1.13) Total water withdrawals at this facility (megaliters)

178

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

☑ About the same

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

(9.3.1.16) Withdrawals from brackish surface water/seawater

0

(9.3.1.17) Withdrawals from groundwater - renewable

0

(9.3.1.18) Withdrawals from groundwater - non-renewable

0

(9.3.1.19) Withdrawals from produced/entrained water

0

(9.3.1.20) Withdrawals from third party sources

178

(9.3.1.27) Total water consumption at this facility (megaliters)

178

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ About the same

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicates that Central Plant is outside the threshold of 40-80% defined as high water stress. Trends: Central Plant increased their withdrawals and consumption by 4% in the reporting year. This is due to stable operations at the plant. As in the previous reporting year there were no discharges at the operation. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10%

and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: Their water withdrawal volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is Vaal Central Water Company. Discharges to third party destinations: none.

Row 16

(9.3.1.1) Facility reference number

Select from:

✓ Facility 16

(9.3.1.2) Facility name (optional)

Free state surface operations

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals only

(9.3.1.6) Reason for no withdrawals and/or discharges

The Free State Surface Operations operate a closed loop recycling systems and thus do not discharge water to any destination

(9.3.1.7) Country/Area & River basin South Africa Vaal (9.3.1.8) Latitude -28 (9.3.1.9) Longitude 26.833333 (9.3.1.10) Located in area with water stress Select from: ✓ No (9.3.1.13) Total water withdrawals at this facility (megaliters) 2036 (9.3.1.14) Comparison of total withdrawals with previous reporting year Select from: ✓ Higher (9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

0

0

(9.3.1.17) Withdrawals from groundwater - renewable

0

(9.3.1.18) Withdrawals from groundwater - non-renewable

0

(9.3.1.19) Withdrawals from produced/entrained water

0

(9.3.1.20) Withdrawals from third party sources

2036

(9.3.1.27) Total water consumption at this facility (megaliters)

2036

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Higher

(9.3.1.29) Please explain

Free state surface operations is an aggregate of several surface operations owned by Harmony Gold in the Free State area. The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicates that these operations were outside the threshold of 40-80% defined as high water stress. Trends: The Free State surface operations increased their withdrawals and consumption by 37% in the reporting year, resulting from production changes. As in the previous reporting year there were no discharges at the operations. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals -discharge. Measurement methods: The withdrawal volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is the municipal supplier. Discharges to third party destinations: none.

Row 17

(9.3.1.1) Facility reference number

Select from:

✓ Facility 17

(9.3.1.2) Facility name (optional)

Moab Khotsong

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals only

(9.3.1.6) Reason for no withdrawals and/or discharges

Moab Khotsong operates a closed loop recycling system and thus does not discharge water to any destination

(9.3.1.7) Country/Area & River basin

South Africa

✓ Vaal

(9.3.1.8) Latitude

-26.979163

(9.3.1.9) Longitude

26.781464

(9.3.1.10) Located in area with water stress

Select from:

✓ No

(9.3.1.13) Total water withdrawals at this facility (megaliters)

7806

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

0

(9.3.1.16) Withdrawals from brackish surface water/seawater

0

(9.3.1.17) Withdrawals from groundwater - renewable

622

(9.3.1.18) Withdrawals from groundwater - non-renewable

3317

(9.3.1.19) Withdrawals from produced/entrained water

36

(9.3.1.20) Withdrawals from third party sources

3831

(9.3.1.27) Total water consumption at this facility (megaliters)

7806

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Higher

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicates that Moab Khotsong is outside the threshold of 40-80% defined as high water stress. Trends: Moab Khotsong's withdrawals and consumption increased by 33%, reflecting production changes. As in the previous reporting year there were no discharges at the operation. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus consumption. Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Measurement methods: The water withdrawal and discharge volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is the Midvaal Water Company. Discharges to third party destinations: none.

Row 18

(9.3.1.1) Facility reference number

Select from:

✓ Facility 18

(9.3.1.2) Facility name (optional)

Nufcor

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals only

(9.3.1.6) Reason for no withdrawals and/or discharges

Nufcor operates a closed loop recycling system and thus does not discharge water to any destination

(9.3.1.7) Country/Area & River basin

South Africa

✓ Vaal

(9.3.1.8) Latitude

-26.309144

(9.3.1.9) Longitude
27.73853
(9.3.1.10) Located in area with water stress
Select from: ✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
31
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ Much higher
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water

(9.3.1.20) Withdrawals from third party sources

31

(9.3.1.27) Total water consumption at this facility (megaliters)

31

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Much higher

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicates that Nufcor is within the threshold of 40-80% defined as high water stress. Trends: Water withdrawals increased by 45%, discharges remained at zero therefore the water consumption increased by 45%. The increase in withdrawals is a result of leaks in the pipe which are being replaced as part of ongoing maintenance. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: The water withdrawal volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is Rand Water. Discharges to third party destinations: none.

Row 19

(9.3.1.1) Facility reference number

Select from:

✓ Facility 19

(9.3.1.2) Facility name (optional)

Nyala

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

- Risks
- Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals only

(9.3.1.6) Reason for no withdrawals and/or discharges

Nyala operates a closed loop recycling system and thus does not discharge water to any destination

(9.3.1.7) Country/Area & River basin

South Africa

✓ Vaal

(9.3.1.8) Latitude

-27.900121

(9.3.1.9) Longitude

26.679088

(9.3.1.10) Located in area with water stress

Select from: ☑ No
(9.3.1.13) Total water withdrawals at this facility (megaliters)
236
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ Much higher
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
o
(9.3.1.19) Withdrawals from produced/entrained water
o
(9.3.1.20) Withdrawals from third party sources

(9.3.1.27) Total water consumption at this facility (megaliters)

236

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Much higher

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicates that Nyala is outside the threshold of 40-80% defined as high water stress. Trends: Water withdrawals increased by 74%, discharges remained at zero therefore the water consumption increased by 74%, withdrawals and thus consumption increased due to increased usage at the hostels. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: The water withdrawal volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is the RO plant. Discharges to third party destinations: none.

Row 20

(9.3.1.1) Facility reference number

Select from:

✓ Facility 20

(9.3.1.2) Facility name (optional)

Kopanang

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals only

(9.3.1.6) Reason for no withdrawals and/or discharges

Kopanang operates a closed loop recycling system and thus does not discharge water to any destination

(9.3.1.7) Country/Area & River basin

South Africa

✓ Vaal

(9.3.1.8) Latitude

-26.979163

(9.3.1.9) Longitude

26.781464

(9.3.1.10) Located in area with water stress

Select from:

✓ No

(9.3.1.13) Total water withdrawals at this facility (megaliters)

212
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ☑ Much higher
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
182
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water
25
(9.3.1.20) Withdrawals from third party sources
6
(9.3.1.27) Total water consumption at this facility (megaliters)
212

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Much higher

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicates that Kopanang is outside the threshold of 40-80% defined as high water stress. Trends: Water withdrawals increased by 80%, discharges remained at zero therefore the water consumption increased by 80%. Harmony anticipates their future water volumes to reduce as the operation has reached its end of life and closed. The increases are due to increased withdrawals for irrigation purposes. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: The water withdrawal volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is Bloemwater (formerly Sedibeng). Discharges to third party destinations: none.

Row 21

(9.3.1.1) Facility reference number

Select from:

✓ Facility 21

(9.3.1.2) Facility name (optional)

Mponeng

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals only

(9.3.1.6) Reason for no withdrawals and/or discharges

Mponeng operates a closed loop recycling system and thus does not discharge water to any destination

(9.3.1.7) Country/Area & River basin

South Africa

Vaal

(9.3.1.8) Latitude

-26.338435

(9.3.1.9) Longitude

27.492663

(9.3.1.10) Located in area with water stress

Select from:

✓ Yes

(9.3.1.13) Total water withdrawals at this facility (megaliters)

2864

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

✓ About the same

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
0
(9.3.1.19) Withdrawals from produced/entrained water
62
(9.3.1.20) Withdrawals from third party sources
2802
(9.3.1.27) Total water consumption at this facility (megaliters)
2864
(9.3.1.28) Comparison of total consumption with previous reporting year
Select from: ✓ About the same
(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicates that Mponeng is inside the threshold of 40-80% defined as high water stress. Trends: Water withdrawals decreased by 2%, discharges remained at zero therefore the water consumption decreased by 2%, reflecting stable operations. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: Their water withdrawal volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is the municipal supplier. Discharges to third party destinations: none.

Row 22

(9.3.1.1) Facility reference number

Select from:

✓ Facility 22

(9.3.1.2) Facility name (optional)

Mine Waste Solutions

(9.3.1.3) Value chain stage

Select from:

Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals only

(9.3.1.6) Reason for no withdrawals and/or discharges

Mine Waste Solutions operates a closed loop recycling system and thus does not discharge water to any destination

(9.3.1.7) Country/Area & River basin

South Africa

✓ Vaal

(9.3.1.8) Latitude

-26.836511

(9.3.1.9) Longitude

26.796732

(9.3.1.10) Located in area with water stress

Select from:

✓ No

(9.3.1.13) Total water withdrawals at this facility (megaliters)

5744

(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

✓ About the same

(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

0

(9.3.1.16) Withdrawals from brackish surface water/seawater

0

(9.3.1.17) Withdrawals from groundwater - renewable

1950

(9.3.1.18) Withdrawals from groundwater - non-renewable

2102

(9.3.1.19) Withdrawals from produced/entrained water

0

(9.3.1.20) Withdrawals from third party sources

1692

(9.3.1.27) Total water consumption at this facility (megaliters)

5744

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

About the same

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicates that Mine Waste Solutions is outside the threshold of 40-80% defined as high water stress. Trends: Water withdrawals increased by 1%, discharges remained at zero therefore the water consumption increased by 1% reflecting stable operations. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: The water withdrawal volumes are obtained from direct measurements using an online data monitoring system.

Type of freshwater withdrawals sources: none. Withdrawals from third party sources: Harmony's third-party supplier is the Midvaal Water Company Discharges to third party destinations: none.

Row 23

(9.3.1.1) Facility reference number

Select from:

✓ Facility 23

(9.3.1.2) Facility name (optional)

Covalent Water Company

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply

Risks

Opportunities

(9.3.1.5) Withdrawals or discharges in the reporting year

Select from:

✓ Yes, withdrawals and discharges

(9.3.1.7) Country/Area & River basin

South Africa

✓ Vaal

(9.3.1.8) Latitude
-26.338435
(9.3.1.9) Longitude
27.492663
(9.3.1.10) Located in area with water stress
Select from: ✓ Yes
(9.3.1.13) Total water withdrawals at this facility (megaliters)
8815
(9.3.1.14) Comparison of total withdrawals with previous reporting year
Select from: ✓ Higher
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
o
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
o
(9.3.1.18) Withdrawals from groundwater - non-renewable

0010
(9.3.1.19) Withdrawals from produced/entrained water
0
(9.3.1.20) Withdrawals from third party sources
0
(9.3.1.21) Total water discharges at this facility (megaliters)
8824
(9.3.1.22) Comparison of total discharges with previous reporting year
Select from: ✓ Much higher
(9.3.1.23) Discharges to fresh surface water
5904
(9.3.1.24) Discharges to brackish surface water/seawater
2919
(9.3.1.25) Discharges to groundwater
0
(9.3.1.26) Discharges to third party destinations
0
(9.3.1.27) Total water consumption at this facility (megaliters)

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

Much lower

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicates that the Covalent Water Company is within the threshold of 40-80% defined as high water stress. Trends: Water withdrawals increased by 24%, discharges increased by 46% therefore the water consumption decreased by 101%. Covalent pumps water out of our underground shafts. The negative consumption arises due to the need to reduce the water level at the operation and create enough freeboard resulting in higher discharges than withdrawals. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates their water consumption in accordance with the CDP's formula of withdrawals minus discharge. Measurement methods: The water withdrawal and discharge volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: Harmony's third-party supplier is the municipal supplier. Discharges to third party destinations: none.

Row 24

(9.3.1.1) Facility reference number

Select from:

✓ Facility 24

(9.3.1.2) Facility name (optional)

Margaret Water Company

(9.3.1.3) Value chain stage

Select from:

✓ Direct operations

(9.3.1.4) Dependencies, impacts, risks, and/or opportunities identified at this facility

Select all that apply ☑ Risks ☑ Opportunities
(9.3.1.5) Withdrawals or discharges in the reporting year
Select from: ✓ Yes, withdrawals and discharges
(9.3.1.7) Country/Area & River basin
South Africa ☑ Vaal
(9.3.1.8) Latitude
-26.979163
(9.3.1.9) Longitude
26.781464
(9.3.1.10) Located in area with water stress
Select from: ☑ No
(9.3.1.13) Total water withdrawals at this facility (megaliters)
7299
(9.3.1.14) Comparison of total withdrawals with previous reporting year

Select from:

✓ Higher
(9.3.1.15) Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
(9.3.1.16) Withdrawals from brackish surface water/seawater
0
(9.3.1.17) Withdrawals from groundwater - renewable
0
(9.3.1.18) Withdrawals from groundwater - non-renewable
7299
(9.3.1.19) Withdrawals from produced/entrained water
0
(9.3.1.20) Withdrawals from third party sources
0
(9.3.1.21) Total water discharges at this facility (megaliters)
7131
(9.3.1.22) Comparison of total discharges with previous reporting year

Select from:

(9.3.1.23) Discharges to fresh surface water

(9.3.1.24) Discharges to brackish surface water/seawater

0

(9.3.1.25) Discharges to groundwater

0

(9.3.1.26) Discharges to third party destinations

1482

(9.3.1.27) Total water consumption at this facility (megaliters)

168

(9.3.1.28) Comparison of total consumption with previous reporting year

Select from:

✓ Lower

(9.3.1.29) Please explain

The WWF Water Risk Filter was used to evaluate the water stress in the operation's area. The tool indicates that the Margaret Water Company falls within the threshold of 40-80% defined as high water stress. Trends: The water withdrawals increased by 24%, discharges increased by 25% and the consumption decreased by 19% due to above average rainfall increasing pumping requirements. Harmony anticipates their future water volumes to reduce in line with their water targets and water conservation initiatives such as process optimisation and water recycling. Thresholds: Harmony defines higher/lower as any change between 10% and 40% and about the same as any change below 10%. Much higher/lower is defined as a change greater than 40%. Harmony calculates water consumption in accordance with the CDP's formula of withdrawals minus discharges. Measurement methods: The water withdrawal and discharge volumes are obtained from direct measurements using an online data monitoring system. Type of freshwater withdrawal sources: none. Withdrawals from third party sources: none. Discharges to third party destinations: local farmers make use of discharged water which positively impacts water availability in the area.

[Add row]

(9.3.2) For the facilities in your direct operations referenced in 9.3.1, what proportion of water accounting data has been third party verified?

Water withdrawals - total volumes

(9.3.2.1) % verified

Select from:

✓ 76-100

(9.3.2.2) Verification standard used

International Standard on Assurance Engagements (ISAE) 3000. Scope - Assurance Engagements other than audits or reviews of historical financial information. The water use (as part of water used for primary activities) was audited with limited assurance. The scope of coverage for the audit was corporate.

Water withdrawals - volume by source

(9.3.2.1) % verified

Select from:

✓ 76-100

(9.3.2.2) Verification standard used

International Standard on Assurance Engagements (ISAE) 3000. Scope - Assurance Engagements other than audits or reviews of historical financial information. The water use (as part of water used for primary activities) was audited with limited assurance. The scope of coverage for the audit was corporate.

Water withdrawals – quality by standard water quality parameters

(9.3.2.1) % verified

Select from:

✓ Not verified

(9.3.2.3) Please explain

These volumes are not used to track water withdrawal efficiency and are therefore not verified.

Water discharges - total volumes

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

The water discharge volumes are verified externally as part of our water discharge permit environment permit requirements. Verification is done according to ISO14001 and is given limited assurance. The scope of the audit is corporate.

Water discharges – volume by destination

(9.3.2.1) % verified

Select from:

✓ Not verified

(9.3.2.3) Please explain

These volumes are not used to track water withdrawal efficiency and are therefore not verified.

Water discharges – volume by final treatment level

(9.3.2.1) % verified

Select from:

✓ Not verified

(9.3.2.3) Please explain

These volumes are not used to track water withdrawal efficiency and are therefore not verified.

Water discharges – quality by standard water quality parameters

(9.3.2.1) % verified

Select from:

☑ 76-100

(9.3.2.2) Verification standard used

The water discharge volumes are verified externally as part of our water discharge permit requirements. Verification is done according to ISO14001 and is given limited assurance. The scope of the audit is corporate.

Water consumption - total volume

(9.3.2.1) % verified

Select from:

✓ 76-100

(9.3.2.2) Verification standard used

International Standard on Assurance Engagements (ISAE) 3000. Scope - Assurance Engagements other than audits or reviews of historical financial information. The water use (as part of water used for primary activities) was audited with limited assurance. The scope of coverage for the audit was corporate. [Fixed row]

(9.5) Provide a figure for your organization's total water withdrawal efficiency.

(9.5.1) Revenue (currency)

61379000000

(9.5.2) Total water withdrawal efficiency

(9.5.3) Anticipated forward trend

We anticipate our water withdrawal intensity to decrease in the future, as our water efficiency metrics increase due to the implementation of more water efficiency projects and the increased recycling of water at our operations.

[Fixed row]

(9.10) Do you calculate water intensity information for your metals and mining activities?

Select from:

Yes

(9.10.1) For your top 5 products by revenue, provide the following intensity information associated with your metals and mining activities.

Row 1

(9.10.1.1) Product name

Gold

(9.10.1.2) Numerator: Water aspect

Select from:

✓ Total water use

(9.10.1.3) **Denominator**

Select from:

✓ Ton of ore processed

(9.10.1.4) Comparison with previous reporting year

Select from:

Higher

(9.10.1.5) Please explain

Choice of numerator: total water use volumes are used in this metric to allow Harmony to measure its overall water efficiency at our operations. No water source is excluded from this metric. Choice of denominator: tonnes of ore processed is more reflective of water efficiencies at our operations as it is less dependent on ore grade or gold price fluctuations. How the metric is used internally: Harmony's water strategy supports conservation and demand management including optimisation. How the metrics are used internally: The water use intensity metric is used to track performance in this regard. Tracking the water intensity metric allows Harmony to understand the relationship between production and water needs for the production process. Changes in the metric give an indication of the process efficiency. This information is used to make informed management decisions. Strategy in place to reduce water intensity: Harmony's water strategy includes a water intensity target to reduce its water use volumes and this metric is used to monitor the progress towards achieving this target. Harmony's water strategy supports conservation and demand management including optimisation. This strategy will result in a reduction in the water intensity. Trend and threshold: This intensity increased (21% change) in the reporting year. This change can be attributed to production changes at our various operations. Harmony defines higher/lower as any change below 10%. Much higher/lower is defined as a change greater than 40%. Future anticipated trends: The water intensity is anticipated to decrease in the future as Harmony's water strategy is implemented to reduce the water use volumes. Boundary: This metric is not restricted to a specific region or operation. It therefore covers all operations in South Africa and Papua New Guinea.

(9.13) Do any of your products contain substances classified as hazardous by a regulatory authority?

(9.13.1) Products contain hazardous substances

Select from:

✓ No

(9.13.2) Comment

Harmony predominantly produces gold which is not considered hazardous. Uranium concentrate forms a small portion of our revenue but has not been classified as hazardous as it is defined as naturally occurring.

[Fixed row]

(9.14) Do you classify any of your current products and/or services as low water impact?

(9.14.1) Products and/or services classified as low water impact

Select from:

Yes

(9.14.2) Definition used to classify low water impact

Definition of low water impact, including criteria and thresholds: Harmony classifies its products as lower water use when the percent of water recycled is above 75% or when an operation operates on a closed loop circuit resulting in zero discharges. Furthermore, an operation is defined as low water impact if it makes a positive water impact on the surrounding community by providing quality water supply. Harmony operates extensive water treatment plants at our operations to ensure that water quality is of consistently high quality. This allows us to recycle water and operate a large number of operations on a closed loop circuit thereby limiting the water discharges and potential for water pollution. In addition, Harmony is actively involved with our local communities and ensures that there is adequate water supply through collaboration with the local water utilities. Our water consumption could have an impact on the environment and communities around our operations with whom we share this resource. As such, managing and mitigating our impacts on water-catchment areas by ensuring we do not degrade the quality or reduce the volume of water in surrounding areas is crucial to maintaining our social license to operate. Despite consuming more, Harmony has improved its intensities per tonne of ore processed relative to water consumption. After recent acquisitions, we have operational control of Covalent Water, which is a valuable addition to our portfolio as it opens significant opportunities to beneficiate and commercialise this scarce resource. Covalent was established to operate, maintain, and manage dewatering operations from adjacent historical mine voids. Covalent, purchased in conjunction with Mponeng, is critical to continue pumping water out of Mponeng to keep it dry. The Margaret Water Company discharges are largely recycled into the Moab Khotsong and Mine Waste Solutions reticulation circuit. With the physical impacts of climate change posing potential threats to water security in South Africa, these shafts are strategic assets for community upliftment as well as operational growth and development. Harmony continues to initiate projects to improve water efficiencies and impacts at our operations, including Mponeng and Mine Waste Solutions. Our expanded base of assets presents an opportunity to identify synergies within and between operations, which could support more aggressive reductions in the short to medium term, which could be considered as having a lower detrimental impact on water resources, and water quality. At Hidden Valley in Papua New Guinea, water is recycled to reduce extraction from surface water in the Watut River system. All water is treated as part of the recycling process and a rainwater harvesting project is planned for 2025 to supplement the water supply.

(9.14.4) Please explain

Harmony is committed to water and environmental stewardship. Accordingly, the group has implemented and plans to implement a wide range of low water impact measures across its operations as part of our water strategy.

[Fixed row]

(9.15) Do you have any water-related targets?

Select from:

✓ Yes

(9.15.1) Indicate whether you have targets relating to water pollution, water withdrawals, WASH, or other water-related categories.

Water pollution

(9.15.1.1) Target set in this category

Select from:

Yes

Water withdrawals

(9.15.1.1) Target set in this category

Select from:

✓ No, but we plan to within the next two years

(9.15.1.2) Please explain

Harmony has not set any water withdrawals targets at our operations. Our targets are focused on water use or consumption as these are more indicative of our operational performance. Future targets are being considered that are site specific and will be based on the facility's dependence on withdrawals in conjunction with any plans to install Reverse Osmosis plants. Across the Group this is likely to result in a 1% reduction in overall water withdrawals by 2027. Harmony does not have a water withdrawal target due to the variability and proportion of the dewatered water component.

Water, Sanitation, and Hygiene (WASH) services

(9.15.1.1) Target set in this category

Select from:

Yes

Other

(9.15.1.1) Target set in this category

Select from:

Yes

[Fixed row]

(9.15.2) Provide details of your water-related targets and the progress made.

Row 1

(9.15.2.1) Target reference number

Select from:

✓ Target 1

(9.15.2.2) Target coverage

Select from:

✓ Organization-wide (direct operations only)

(9.15.2.3) Category of target & Quantitative metric

Water consumption

☑ Reduction in total water consumption

(9.15.2.4) Date target was set

06/29/2022

(9.15.2.5) End date of base year

06/29/2022

(9.15.2.6) Base year figure

21190

(9.15.2.7) End date of target year

06/29/2027

(9.15.2.8) Target year figure

20342

(9.15.2.9) Reporting year figure

19304

(9.15.2.10) Target status in reporting year

Select from:

Achieved

(9.15.2.11) % of target achieved relative to base year

222

(9.15.2.12) Global environmental treaties/initiatives/ frameworks aligned with or supported by this target

Select all that apply

✓ Sustainable Development Goal 6

(9.15.2.13) Explain target coverage and identify any exclusions

Harmony recognises the importance of responsible water management and has set group wide targets to reduce volumes of potable water consumption used by 10% against a 2021 baseline by 2027. This target includes all of Harmony's new acquisitions and there are no exclusions from the target. Only Harmony's direct operations are included within this target. Harmony has minimal influence over its upstream value chain suppliers and as such has not included them within the target.

Harmony does not have any operations in areas that have been defined as priority locations, however there are 4 operations located within areas identified as water stressed.

(9.15.2.15) Actions which contributed most to achieving or maintaining this target

Harmony implement further water efficiency and management initiatives to reduce their use of potable water at operations. We constructed additional water treatment plants in the North West and Free State provinces in South Africa. These plants will reduce our overall potable water consumption at our operations. In PNG, a rainwater harvesting system is planned for FY25. Harmony is on track to maintaining this target based on current plans.

(9.15.2.16) Further details of target

Harmony's target is a financial year target and is not part of any regulatory requirements. It does not form part of an overarching longer term target. This target intends to assist Harmony in reducing water withdrawals at its operations. This mitigates potential water related risks relating to water supply. Furthermore, it assists in tracking our efforts to reduce our impact on surrounding water basins and water availability. Methodology: The target was set considering current operation conditions at our mines as well as the initiatives that can feasibly be implemented. The baseline reflects conditions prior to setting the target. No specific standard was used in this approach.

Row 2

(9.15.2.1) Target reference number

Select from:

✓ Target 2

(9.15.2.2) Target coverage

Select from:

✓ Organization-wide (direct operations only)

(9.15.2.3) Category of target & Quantitative metric

Water recycling/reuse

☑ Other water recycling/reuse, please specify: Increase in water recycling/reuse resulting in a reduction of water use.

(9.15.2.4) Date target was set

(9.15.2.5) End date of base year

06/29/2022

(9.15.2.6) Base year figure

60

(9.15.2.7) End date of target year

06/29/2027

(9.15.2.8) Target year figure

50

(9.15.2.9) Reporting year figure

74

(9.15.2.10) Target status in reporting year

Select from:

Achieved

(9.15.2.11) % of target achieved relative to base year

-140

(9.15.2.12) Global environmental treaties/initiatives/ frameworks aligned with or supported by this target

Select all that apply

✓ Sustainable Development Goal 6

(9.15.2.13) Explain target coverage and identify any exclusions

Harmony recognises the importance of responsible water management and has set group wide targets to recycle at least 50% of water off a 2021 baseline by 2027. This target includes all of Harmony's new acquisitions and there are no exclusions from the target. Only Harmony's direct operations are included within this target. Harmony has minimal influence over its upstream value chain suppliers and as such has not included them within the target. Harmony does not have any operations in areas that have been defined as priority locations, however there are 4 operations located within areas identified as water stressed.

(9.15.2.15) Actions which contributed most to achieving or maintaining this target

Harmony has exceeded the 50% target in the reporting year by achieving 77% recycling at its operations due to the construction and commissioning of several reverse osmosis plants at our South African operations along with improved monitoring at all our operations including Hidden Valley in Papua New Guinea.

(9.15.2.16) Further details of target

Harmony's target is a financial year target and is not part of any regulatory requirements. It does not form part of an overarching longer term target. This target intends to assist Harmony in reducing water withdrawals at its operations. This mitigates potential water related risks relating to water supply. Furthermore, it assists in tracking our efforts to reduce our impact on surrounding water basins and water availability. Methodology: The target was set considering current operation conditions at our mines as well as the initiatives that can feasibly be implemented. The baseline reflects conditions prior to setting the target. No specific standard was used in this approach.

Row 3

(9.15.2.1) Target reference number

Select from:

✓ Target 3

(9.15.2.2) Target coverage

Select from:

✓ Organization-wide (direct operations only)

(9.15.2.3) Category of target & Quantitative metric

Product water intensity

☑ Reduction per unit of production

(9.15.2.4) Date target was set
06/29/2022
(9.15.2.5) End date of base year
06/29/2022
(9.15.2.6) Base year figure
0.62
(9.15.2.7) End date of target year
06/29/2027
(9.15.2.8) Target year figure
0.56
(9.15.2.9) Reporting year figure
0.68
(9.15.2.10) Target status in reporting year
Select from: ✓ Underway
(9.15.2.11) % of target achieved relative to base year

(9.15.2.12) Global environmental treaties/initiatives/ frameworks aligned with or supported by this target

-100

✓ Sustainable Development Goal 6

(9.15.2.13) Explain target coverage and identify any exclusions

Harmony recognises the importance of responsible water management and has set group wide targets to reduce the consumption per unit of production of our operations by 10% against a 2021 baseline by 2027. This target includes all of Harmony's new acquisitions and there are no exclusions from the target. Only Harmony's direct operations are included within this target. Harmony has minimal influence over its upstream value chain suppliers and as such has not included them within the target. Harmony does not have any operations in areas that have been defined as priority locations, however there are 4 operations located within areas identified as water stressed.

(9.15.2.14) Plan for achieving target, and progress made to the end of the reporting year

Harmony plans to implement further water efficiency and management initiatives to reduce their use of potable water at operations. We are continuing feasible studies and engagements regarding the construction of additional water treatment plants in the North West and Free State provinces in South Africa. These plants will reduce our overall potable water consumption at our operations thereby reducing our water use intensity. Harmony is currently not track to meet this target however action plans will be revised in FY25 to ensure the 2027 target is met.

(9.15.2.16) Further details of target

Harmony's target is a financial year target and is not part of any regulatory requirements. It does not form part of an overarching longer term target. This target intends to assist Harmony in reducing water withdrawals at its operations and improving its water use efficiency. This mitigates potential water related risks relating to water supply. Furthermore, it assists in tracking our efforts to reduce our impact on surrounding water basins and water availability. Methodology: The target was set considering current operation conditions at our mines as well as the initiatives that can feasibly be implemented. The baseline reflects conditions prior to setting the target. No specific standard was used in this approach.

Row 4

(9.15.2.1) Target reference number

Select from:

✓ Target 4

(9.15.2.2) Target coverage

Select from:

✓ Organization-wide (direct operations only)

(9.15.2.3) Category of target & Quantitative metric

Water pollution

✓ Increase in the proportion of wastewater that is safely treated

(9.15.2.4) Date target was set

06/29/2022

(9.15.2.5) End date of base year

06/29/2022

(9.15.2.6) Base year figure

4225440

(9.15.2.7) End date of target year

06/29/2027

(9.15.2.8) Target year figure

4986019

(9.15.2.9) Reporting year figure

5758955

(9.15.2.10) Target status in reporting year

Select from:

Achieved

(9.15.2.11) % of target achieved relative to base year

(9.15.2.12) Global environmental treaties/initiatives/ frameworks aligned with or supported by this target

Select all that apply

✓ Sustainable Development Goal 6

(9.15.2.13) Explain target coverage and identify any exclusions

Harmony recognises the importance of responsible water management and has set group wide targets to increase the water treated at operations by 18% against a 2022 baseline by 2025. This target includes all of Harmony's new acquisitions and there are no exclusions from the target. Only Harmony's direct operations are included within this target. Harmony has minimal influence over its upstream value chain suppliers and as such has not included them within the target. Harmony does not have any operations in areas that have been defined as priority locations, however there are 4 operations located within areas identified as water stressed.

(9.15.2.15) Actions which contributed most to achieving or maintaining this target

In FY24, Harmony treated more than the targeted increase in water. We achieved an increase of 36%, well above the targeted 18% due to the newly constructed Reverse Osmosis plants that were completed in the reporting year.

(9.15.2.16) Further details of target

Harmony's target is a financial year target and is not part of any regulatory requirements. It does not form part of an overarching longer term target. This target intends to assist Harmony in reducing water withdrawals at its operations and improving its water use efficiency. This mitigates potential water related risks relating to water supply. Furthermore, it assists in tracking our efforts to reduce our impact on surrounding water basins and water availability. Methodology: The target was set considering current operation conditions at our mines as well as the initiatives that can feasibly be implemented. The baseline reflects conditions prior to setting the target. No specific standard was used in this approach.

Row 5

(9.15.2.1) Target reference number

Select from:

✓ Target 5

(9.15.2.2) Target coverage

Select from:

✓ Organization-wide (direct operations only)

(9.15.2.3) Category of target & Quantitative metric

Water, Sanitation, and Hygiene (WASH) services

☑ Other WASH, please specify :WASH project spend

(9.15.2.4) Date target was set

06/29/2022

(9.15.2.5) End date of base year

06/29/2022

(9.15.2.6) Base year figure

0

(9.15.2.7) End date of target year

06/29/2027

(9.15.2.8) Target year figure

277000000

(9.15.2.9) Reporting year figure

40829485

(9.15.2.10) Target status in reporting year

Select from:

Underway

(9.15.2.11) % of target achieved relative to base year

15

(9.15.2.12) Global environmental treaties/initiatives/ frameworks aligned with or supported by this target

Select all that apply

✓ Sustainable Development Goal 6

(9.15.2.13) Explain target coverage and identify any exclusions

This is a company-wide target relating to improving access to WASH services and ensuring surrounding communities have adequate WASH facilities. Harmony has committed to spend R277 million on WASH related projects by 2027. This target includes all of Harmony's operations and excludes upstream value chain suppliers.

(9.15.2.14) Plan for achieving target, and progress made to the end of the reporting year

Harmony spent a total of R14.6 million on WASH related initiatives in the reporting year. Added to the R40.8 million spent in the previous years, a total of 20% (R55.4 million) of the committed spend has been used. Harmony does not have specific milestones for achieving this target however continued WASH initiatives will be implemented at our operations to ensure adequate WASH facilities are available.

(9.15.2.16) Further details of target

Harmony's target is a financial year target and is not part of any regulatory requirements. It does not form part of an overarching longer term target. This target intends to assist in tracking Harmony's SLPs and the water related commitments therein. The initiatives from this target reduce Harmony's impact on water availability in the surrounding communities. Methodology: The target was set considering current operation conditions at our mines as well as the initiatives that can feasibly be implemented. The baseline reflects conditions prior to setting the target. No specific standard was used in this approach.

[Add row]

C10. Environmental performance - Plastics

(10.1) Do you have plastics-related targets, and if so what type?

(10.1.1) Targets in place

Select from:

✓ No, but we plan to within the next two years

(10.1.3) Please explain

Harmony does not currently disclose a plastics-specific reclamation or recycling programme, nor plastics-recycling targets, in its FY24 reporting suite. Waste is reported at a group level (hazardous, non-hazardous, and mineral waste), but plastics are not presented as a separate stream. Although no plastics programme has been launched to date, we plan to introduce plastics-specific reporting and related targets within the next two years to strengthen our circular economy commitments. [Fixed row]

(10.2) Indicate whether your organization engages in the following activities.

Production/commercialization of plastic polymers (including plastic converters)

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

The production of plastic polymers is not applicable to Harmony as it falls outside the scope of the company's core activities in gold mining. Harmony is primarily focused on the exploration, extraction, and processing of gold ore to produce gold as its main product. Plastic polymer production involves the manufacturing of synthetic materials and compounds, which is a distinct industry separate from gold mining.

Production/commercialization of durable plastic goods and/or components (including mixed materials)

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

The production of durable plastic components is not applicable to Harmony as it is not directly involved in manufacturing or assembling products that utilize such components.

Usage of durable plastics goods and/or components (including mixed materials)

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

The production and commercialization of durable plastic goods, including mixed materials, is not applicable to Harmony as it is not involved in the manufacturing or sale of consumer products or goods that incorporate plastics.

Production/commercialization of plastic packaging

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Harmony is primarily engaged in gold mining and does not engage in the production or commercialization of plastic packaging. The company's core focus is on the exploration, extraction, and processing of gold ore, and its value chain is centred around activities related to gold production

Production/commercialization of goods/products packaged in plastics

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Harmony, as a gold mining company, focuses primarily on the extraction and processing of gold ore, rather than the production of goods packaged in plastics. The company's core business revolves around the mining industry and the value chain associated with gold production.

Provision/commercialization of services that use plastic packaging (e.g., food services)

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Harmony, as a gold mining company, primarily focuses on the extraction and processing of gold ore, rather than the provision or commercialization of services or goods that use plastic packaging. The company's core business lies within the mining industry and the value chain associated with gold production. While the provision or commercialization of services or goods using plastic packaging is not directly applicable to Harmony's operations, the company acknowledges the broader impact of plastic waste. By encouraging collaboration, Harmony contributes to the collective goal of mitigating environmental challenges and creating a more sustainable future.

Provision of waste management and/or water management services

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Harmony as a gold mining company primarily conducts mining activities. It does provide some water management services to surrounding communities where necessary but is not a core business activity.

Provision of financial products and/or services for plastics-related activities

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Harmony is a gold mining company. As such we do not provide financial products or services for plastics-related activities.

Other activities not specified

(10.2.1) Activity applies

Select from:

✓ No

(10.2.2) Comment

Not applicable to Harmony [Fixed row]

C13. F	urther	information	&	sign	off
--------	--------	-------------	---	------	-----

(13.1) Indicate if any environmental information included in your CDP response (not already reported in 7.9.1/2/3, 8.9.1/2/3/4, and 9.3.2) is verified and/or assured by a third party?

Other environmental information included in your CDP response is verified and/or assured by a third party
Select from: ✓ Yes

[Fixed row]

(13.1.1) Which data points within your CDP response are verified and/or assured by a third party, and which standards were used?

Row 1

(13.1.1.1) Environmental issue for which data has been verified and/or assured

Select all that apply

Water

(13.1.1.2) Disclosure module and data verified and/or assured

Environmental performance - Water security

☑ Water consumption – total volume

(13.1.1.3) Verification/assurance standard

☑ ISAE 3000

(13.1.1.4) Further details of the third-party verification/assurance process

Water use for primary activities is verified and reported in Harmony's ESG Reporting, annually. These figures form part of Harmony's risks and opportunities assessments, in terms of determining impacts related to climate change (example, drought), which Harmony identifies as a risk to its operations. During FY23, water used for primary activities received limited assurance. In addition, Harmony has a target to reduce its water use for primary activities. As such, by verifying the water use volumes, the target progress has been verified as well.

(13.1.1.5) Attach verification/assurance evidence/report (optional)

HAR-GHG-Assurance-Certificates.pdf

Row 2

(13.1.1.1) Environmental issue for which data has been verified and/or assured

Select all that apply

✓ Climate change

(13.1.1.2) Disclosure module and data verified and/or assured

Environmental performance - Climate change

☑ Renewable Electricity/Steam/Heat/Cooling consumption

(13.1.1.3) Verification/assurance standard

General standards

✓ ISAE 3000

(13.1.1.4) Further details of the third-party verification/assurance process

The percentage of renewable energy consumption is verified and reported in Harmony's ESG Reporting, annually. These figures form part of Harmony's risks and opportunities assessments, in terms of determining impacts related to climate change (example, extreme weather events), which Harmony identifies as a risk to its operations. During FY24, this metric received limited assurance.

(13.1.1.5) Attach verification/assurance evidence/report (optional)

HAR-GHG-Assurance-Certificates.pdf [Add row]

(13.2) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored.

Additional information
Further information can be found in our annual reporting suite

[Fixed row]

(13.3) Provide the following information for the person that has signed off (approved) your CDP response.

(13.3.1) Job title

Chief Executive Officer (CEO)

(13.3.2) Corresponding job category

Select from:

☑ Chief Executive Officer (CEO)

[Fixed row]

(13.4) Please indicate your consent for CDP to share contact details with the Pacific Institute to support content for its Water Action Hub website.

Select from:

✓ No